DOKTORI (PhD) ÉRTEKEZÉS

BOSNYÁKNÉ EGRI HELGA

KAPOSVÁRI EGYETEM
AGRÁR- ÉS KÖRNYEZETTUDOMÁNYI KAR

2019
HÜVELYESEKBEN (FABACEAE) ELŐFORDULÓ ÍZELTLÁBÚAK KÁRTÉTELÉNEK HATÁSAI A TÁPLÁLÓANYAG-TARTALOM VÁLTOZÁSÁRA

Készítette:
BOSNYÁKNÉ EGRI HELGA

KAPOSVÁR
2019
1. TARTALOMJEGYZÉK
2. BEVEZETÉS ..6
3. IRODALMI ÁTTEKINTÉS ...8

3.1. A hüvelyesek termesztése és jelentősége .. 8
3.2. A hüvelyesek termesztésének volumene, magyarországi és nemzetközi kitekintés .. 9
 3.2.1. A szója [Glycine max (L.) Merr.] származása, hazai termőterülete, tápértéke, összetétele .. 13
 3.2.2. A bab (Phaseolus vulgaris L.) származása, hazai termőterülete, tápértéke, összetétele .. 16

3.3. A hüvelyes növények termesztésének agrotechnikája 18
3.4. A hüvelyesek ízeltlábú kártevői és károsításuk................................. 22
 3.4.1. A vizsgálatok tárgyát képező kártevők jellemzése 24

A babzsizsik (Acanthoscelides obtectus Say, 1831) 24
A közönséges takácsatka (Tetranychus urticae Koch, 1836) 25
A fésűslábú viráglégy [Delia platura (Meigen, 1826)] 26
A vándorpoloska [Nezara viridula (Linnaeus, 1758)] 27

3.5. A szója táplálóanyag-tartalma, antinutritív anyagai....................... 29
3.6. A szója szervesanyag-összetételét befolyásoló hatások elemzése.. 36
 3.6.1. Az abiotikus elemek és a tápanyag-utánpótlás hatása a szója
 beltartalmi összetevőinek változására 36

3.7. Az ízeltlábú károsítók hatása termesztett kultúrnövényeink,
 különösen a szója beltartalmi összetevőire, valamit a klímaváltozás
 hatása a rovarkártevők megjelenésére .. 38
3.8. Modern diagnosztikai módszerek, képalkotás a kártétel-
 diagnosztizálás szolgálatában .. 42

4. A DISSZERTÁCIÓ CÉLKITŰZÉSEI ... 44
5. ANYAG ÉS MÓDSZER .. 45
 5.1. A kártevők okozta táplálóérték változás vizsgálata......................... 45
5.1.1. A fésűslábú virágléggy [D. platura (L.)] szóján okozott érték változásának elemzése ... 45
5.1.2. A vándorpoloska [Nezara viridula (L.)] szóján okozott beltartalmi változásainak elemzése .. 48
5.1.3. A közönséges takácsatka (Tetranychus urticae Koch) szóján okozott érték változásának elemzése ... 49

5.2. A babon okozott kártétel CT-diagnosztikai és tápanyaghasznosulási vizsgálatai ... 52
5.2.1. A babzsizsik (Acanthoscelides obtectus Say) kártételének elemzése CT-diagnosztikai módszerekkel .. 52
5.2.2 A babzsizsik (Acanthoscelides obtectus Say) által károsított tételek ponttjal történő etetési kísérlete .. 56

6. EREDMÉNYEK ÉS ÉRTÉKELÉSÜK ... 60
6.1. A különböző ízeltlábú kártevők szója beltartalmi változására gyakorolt hatásai ... 60
6.1.1. Fésűslábú virágléggel kapcsolatos vizsgálatok .. 60
6.1.2. Vándorpoloskával kapcsolatos vizsgálatok .. 65
6.1.3. A közönséges takácsatkalval kapcsolatos vizsgálatok 68

6.2. A babzsizsik babon okozott kártételének analitikai és takarmányhasznosulási vizsgálatai .. 71
6.2.1. A babzsizsik kártételének elemzése CT-vel végzett képalkotó technika segítségével ... 71
6.2.2. Babzsizsik által károsított babtételek ponttjal történő etetési kísérlete ... 74

7. KÖVETKEZETTÉSEK, JAVASLATOK ... 79
8. ÚJ TUDOMÁNYOS EREDMÉNYEK ... 81
9. ÖSSZEFOGLALÁS ... 83
10. SUMMARY ... 86
11. KÖSZÖNETNYÍLVÁNÍTÁS ...89
12. IRODALOMJEGYZÉK ...90
13. A DISSZERTÁCIÓ TÉMAKÖRÉBŐL MEGJELENT PUBLIKÁCIÓK115
14. A DISSZERTÁCIÓ TÉMAKÖRÉN KÍVÜLI PUBLIKÁCIÓK117
15. RÖVID SZAKMAI ÉLETRAJZ ...118
2. BEVEZETÉS

Magyarországon a fehérjenövények vetésterülete, előállított összes termésmennyisége (borsó: 18.175 ha, 47,626 t; szója: 75.667 ha, 179,282 t; bab: 910 ha, 1713 t, 2017) (URL5) nem fedez a hazai felhasználás igényeit. A jövőben előreláthatólag növekedő termesztési volumenükből adódóan egyre nagyobb figyelmet kell fordítani a termelésük korszerűsítésére, innovatív gyakorlati elemek termesztéstechnológiába ültetésére. E kivánalmak mentén a
meghírdetett nemzeti fehérjeprogram előírányzatainak köszönhetően, a hüvelyes növények, elsősorban a szója vetésterületének növekedése prognosztizálható. Ennek köszönhetően az import fehérjetételek (elsősorban GMO) csökkenése remélhető.

Mindezzel párhuzamosan meg kell említeni, hogy a hüvelyesek, kiváltképp a szója kiterjedt ízeltlábú kártevő közösséggel bír. Az általuk okozott kár elérheti a 10-15% terméskiesést is. Ezért a rovarok okozta kárképek objektív feltérképezése, az ellenük történő hatékony védekezések megvalósítása természetesen egyértelműen hozzájárul e kultúrák gazdaságos előállításához. Összeségében e kártevők és az ellenük irányuló fenntartható növényvédelmi technológiák fejlesztése pedig segíti a nemzeti fehérjeprogram elveinek tényleges megvalósulását.
3. IRODALMI ÁTTEKINTÉS

3.1. A hüvelyesek termesztése és jelentősége

A főbb hüvelyes növények botanikai szempontból a hüvelyesek (Fabales) rendjébe és a pillangósvirágúak (Fabaceae) családjába tartoznak. Ebbe a családba számos kultúrnövény tartozik, melyek termesztése régi korokra nyúlik vissza, nagy termesztési hagyományuk van. A borsót már a kőkorszakban ismerték, a szója termesztésének első írásos emléke Kínából, i. e. 2800-ból származik. A lóbabot Magyarországon már a bronzkorban termesztették, a csillagfürt az ókorból ismert kultúrnövény. Az 1530-ban Európába került babot az indiánok már kb. 5000 éve termesztették (Iványi et al., 1994; Budai, 2002).

A fehérjenövények gyakorlati szempontból két nagy csoportba oszthatók:
- Pillangósvirágú szálastakarmányok,
- Nagymagvú hüvelyesek (étékezési és abrakhüvelyesek)

Kedvező fehérjeösszetételük, valamint a vetésforgóban betöltött szerepük, a talajtermékenységre gyakorolt hatásuk miatt érdemes a figyelmet a hüvelyesek termesztésében rejlő lehetőségekre és előnyökre irányítani. Mindenképpen figyelemre méltó, hogy e növényekkel szimbiózisban élő, légköri nitrogént megkötő baktériumok (Rhizobium spp.) tevékenysége hozzájárul a talaj termékenységének fokozásához, nitrogénnel történő gazdagításához (Balikó és Fülöpné, 2014). Ez a nitrogén szerves anyaghoz kötött, tehát sokkal nehezebben mosódik le a talaj alsóbb rétegeibe, illetve a talajvízekbe, így a környezetet sem szennyezi (Drienyovszki, 2016). Termesztésük további előnye, hogy könnyen beilleszthetők a vetésforgóba, az utóveteményre nézve előnyös hatást gyakorolnak, jelentős fehérjeigényt elégténék ki (Kurnik, 1970).
Termesztésük régi korokra nyúlik vissza. A borsó és a lencse i. e. 7000 évvel már termesztett kultúrként ismertek. Így mint kultúrnövények egyidősek a gabonafélékkel (Balikó és Fülöpné, 2014).

Hazánkban az elmúlt évszázadokban a hüvelyesek (lencse, borsó, bab) szinte kizárólag csak emberi táplálékként voltak ismertek. A zöldbab és a zöldborsó csak a közelmúltban, a konzerv- és hűtőipari felhasználásuknak köszönhetően terjedt el. A hüvelyesek a klimára érzékeny növények, termésükre az évjárat döntő hatást gyakorol. A borsó és a lóbab a leginkább, a szója pedig a legkevésbé érzékenyek ilyen tekintetben (Drienyovszki, 2016; Montoya et al., 2017). Az érzékenység okai lehetnek, a gyenge gyökérzet, a jelentős transzpirációs koefficiens (600-700 l/kg sza.), a sajátos fiziológiai tulajdonságok, és a N-gyűjtés előtti 2-3 hetes „éhezési szakasz”. A nagy terméshez fontos a megfelelő tőszám, hosszú szár, szárszilárdság, nagy hüvelyszám és ezermagtömeg. A hüvelyesek nagy táplálóértékkel rendelkeznek, melyet elsősorban a fehérje mennyisége és minősége, valamint ásványianyag-tartalmuk biztosít (Kurnik, 1970).

3.2. A hüvelyesek termesztésének volumene, magyarországi és nemzetközi kitekintés

A hüvelyesek vetésterülete a világon megközelítőleg 110 millió ha (Drienyovszki, 2016). A főbb hüvelyes növények termőterületének megoszlását (a földimogyoró nélkül) az 1. táblázat mutatja.
1. táblázat: Fontosabb hüvelyes növények termőterületének megoszlása világviszonylatban, 2016 (URL6)

<table>
<thead>
<tr>
<th>Hüvelyes növény</th>
<th>Világviszonylatban termőterületből részesedés (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szója</td>
<td>50</td>
</tr>
<tr>
<td>Szárazbab</td>
<td>24</td>
</tr>
<tr>
<td>Csicszeriborsó</td>
<td>11</td>
</tr>
<tr>
<td>Szárazborsó</td>
<td>10</td>
</tr>
<tr>
<td>Lóbab</td>
<td>3</td>
</tr>
<tr>
<td>Lencse</td>
<td>2</td>
</tr>
</tbody>
</table>

A főbb hüvelyesek termésátlaga pedig a 0,86–5,5 t/ha közötti tartományba tehető (2. táblázat).

2. táblázat: Főbb hüvelyes növények termésátlaga (URL6)

<table>
<thead>
<tr>
<th>Hüvelyes növény</th>
<th>Termésátlag (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borsó</td>
<td>2,1</td>
</tr>
<tr>
<td>Szója</td>
<td>2</td>
</tr>
<tr>
<td>Bab</td>
<td>1,36</td>
</tr>
<tr>
<td>Zöldborsó</td>
<td>3,74</td>
</tr>
<tr>
<td>Zöldbab</td>
<td>5,5</td>
</tr>
<tr>
<td>Lóbab</td>
<td>0,9</td>
</tr>
<tr>
<td>Lencse</td>
<td>0,9</td>
</tr>
<tr>
<td>Csillagfürt</td>
<td>0,86</td>
</tr>
</tbody>
</table>

szójadarárt használnak fel a takarmánygyártó cégek. Ennek a mennyiségnek a 98%-át az EU közvetlenül importálja, vagy importált szójamagból állítja elő. A szójaliszt csupán 2 %-a mintegy 0,8 millió tonna származik a tagországokban termesztett szójából. A szójamag és -dara legnagyobb része a tengerentúlról érkezik (URL10). A magyar takarmányipar nagy mennyiségű szóját hoz be Dél- és Észak-Amerikából, ahol a szójafajták 90-95%-a génmódosított, ezért a hazai üzletek polcain zömmel olyan hústermékeket vásárolhat a fogyasztó, amelyek a GMO-s takarmányon hízlalt állatokból származnak (Balikó, 2015). Magyarország szójaigénye évente kb. 900 ezer tonna. Ebből az ország átlagosan 70-80 ezer tonna közötti mennyiséget termel, 500-700 ezer tonna szójadara kerül be, és ehhez még mintegy 100 ezer tonna szójababot is importál Magyarország (Balikó et al., 2013; Vásáry és Baranyai, 2016). A száraz hüvelyes növények termesztésével 2040 gazdaság foglalkozott Magyarországon 2015-ben, a termőterület többnyire a keleti országrészben koncentrálódva, mindössze 12,5 ezer hektár volt (URL10).

A száraz hüvelyesek részaránya a mezőgazdaság bruttó kibocsátásából az EU tagországai közül csupán Litvániában (3,2%), Észtországban (1,7%), Lettországban (1,3%) és Lengyelországban (1,3%) haladta meg az 1%-ot. Hazánkban marginális arányt képvisel a hüvelyes növények vetésterületéből a csicsersiborsó a 157,5 hektár területtel (1,3%) és 175 tonna mennyiségével, a lóbab a 39,5 hektárral és 36 tonnával, illetve a lencse az alig 15 hektár területtel és évi 10 tonna mennyiséggel (Vásáry és Baranyai, 2016). Az egyéb hüvelyesek közé sorolandó homoki bab, édes csillagfürt (fehér, sárga és kék virágú) és szegletes leden együttes területe is csak 312 hektár volt 2015-ben, amely 225 t termést biztosított (3. táblázat). Bár e növények többsége (bab, csillagfürt, csicsersiborsó, szárazborsó, öszi és tavaszi takarmányborsó) részesedhet a Közös Agrárpolitika 2015–2020 közötti időszakának termeléshez kötött támogatásából (2015: ~40 ezer forint/hektár), termesztésük nem lett vonzóbb 2015-ben, azaz együttes területük továbbra is 12%-kal, a
gazdaságszám (a mezőgazdasági termelést folytató östermelők, családi gazdaságok, Kft, Rt, egyéb) 9%-kal elmaradt a 2005. évihez viszonyítva (URL6).
Magyarországon a csicseriborsón és a lencsén kívül a száraz hüvelyes növények hozamátlaga egyenként 14–36%-kal elmaradt az EU első számú termelő országainak eredményétől, noha az EU-28 átlagánál csupán a borsó és a csillagfürt mutatkozott gyengébbnek a 2010–2014 közötti időszak átlagában (URL6).

3. táblázat: Egyes hüvelyes növények termésadatai 2015-ben Magyarországon (MVH, MKR adatok alapján, AKI Agrárközgazdasági Kutatások Osztálya) (URL11)

<table>
<thead>
<tr>
<th>Terület (ha)</th>
<th>Gazdaságszám</th>
<th>Termés (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takarmányborsó</td>
<td>9087</td>
<td>1539</td>
</tr>
<tr>
<td>Szárazborsó</td>
<td>2279,3</td>
<td>198</td>
</tr>
<tr>
<td>Szárazbab</td>
<td>665,5</td>
<td>169</td>
</tr>
<tr>
<td>Futóbab</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Csicseriborsó</td>
<td>157,5</td>
<td>24</td>
</tr>
<tr>
<td>Lóbab</td>
<td>39,5</td>
<td>13</td>
</tr>
<tr>
<td>Lencse</td>
<td>4,6</td>
<td>4</td>
</tr>
<tr>
<td>Homoki bab</td>
<td>48,3</td>
<td>19</td>
</tr>
<tr>
<td>Édes csillagfürt</td>
<td>160,8</td>
<td>53</td>
</tr>
<tr>
<td>Szegletes lednek</td>
<td>103,3</td>
<td>12</td>
</tr>
<tr>
<td>Száraz hüvelyesek összesen</td>
<td>12561,6</td>
<td>2040</td>
</tr>
</tbody>
</table>

Az európai piac változik, folyamatosan nő a kereslet a különleges élelmiszerek iránt, és a fenntarthatóság is egyre inkább fontossá válik (Bard és Barry, 2000). A száraz hüvelyes növények jól illeszkednek az újfajta fogyasztói elvárásokhoz, precíz technológia mellett termesztésük akár a benchmark (jól jövedelmező) növények termelése során elérhető jövedelmet is biztosíthatná, nem mellesleg e növények termelői 2020-ig számíthatnak hektáronként évi 40-50 ezer forint összegű termeléshez kötött támogatásra is (Vásáry és Baranyai,
2016). A szója gazdasági értékelése világszerte rendkívül megnőtt, és napjainkban már a XXI. század kariernövénye. Míg az 1900-as években csupán 6-8 millió tonnát termeltek, addig manapság meghaladja az éves termésmennyiség világviszonylatban a 180 milliót is. Nyilván e nagyarányú volumennövekedésben szerepet játszik, hogy a kultúrnövény néhány év tized alatt a legsokoldalúbban felhasználható „ipari növény” vált (Balikó et al., 2007). Ezt igazolni látszik a hazai szója vetésterületének növekedése is, 2015-ben 72.016, 2016-ban 61.283 ha. A termésátlagok alakulásához nagyban hozzájárulnak az adott év időjárási tényezői, de összességében 2,5 t/ha körül alakul (URL11).

3.2.1. A szója [Glycine max (L.) Merr.] származása, hazai termőterülete, tápértéke, összetétele

A szóját Kínában és Japánban szent növényként tisztelték, a vallásos szertartásokban is szerepet kapott (a szója megvédi az embereket a gonosz szellemektől és szerencsét hoz a házra). A kelet-ázsiai országok lakosságának nagy népsűrűségében szerepet játszott a szója fogyasztása is. A legtöbb adat azt bizonyítja, hogy a szója ősházája Mandzsúria (Kína és a Koreai-félsziget egymással határos területei), ahol ma is megtalálható a szójának csaknem valamennyi változata, beleértve a jellegzetes indiai alakokat. Innen terjedt el termesztése Japánba, Indiába stb. (Kurnik, 1962). Rendszertani besorolása szerint a pillangósvirágúak családjába tartozó lágyszárú, egynyári haszonnövény. Neve a japán sóju (szójaszósz jelentésű) szóból ered (Balikó et al., 2007). Ma a világ szójatermeszének több mint felét az Amerikai Egyesült Államok adja. Ez az ország a legnagyobb felhasználó, de egyben a legnagyobb szójaexportőr is. Az amerikai szójatermesztés körzetei nagyjából egybeesnek
a kukoricatermesztési övezet azon részeivel, ahol a klimatikus viszonyok a szója számára kedvezőek (Balikó, 2015).

Napjainkban Magyarországon a szója hazai vetésterülete emelkedni kezdett, köszönhetően a különböző támogatási formáknak (72 ezer hektár) (URL6).

A világ nagyobb hányadának (Ázsia, Afrika lakosainak) táplálkozása legnagyobb részt növényi eredetű élelemből áll. Állati eredetű fehérjét csak rendkívül kis mértékben fogyasztanak. Ezzel ellentétben az ún. fejlett országokban éppen fordított a fehérjefogyasztás aránya: több mint kétharmada állati eredetű, és alig egyharmada növényi eredetű fehérjéből áll (Balikó, 1998; Balikó, 2015; Ugbabe et al., 2017). A világon termesztett összes növényi fehérjéből a szójafehérje jelenleg meghaladja a 20%-ot, az állatok takarmányfehérje-fogyasztásában pedig a szójafehérje részesedése eléri a 33%-ot (Kralovánszky, 2000; Balikó et al., 2007).

A 4. táblázat jól szemlélteti a szója, mint takarmánynövény fontosságát a magas fehérje-, zsír-, illetve rosttartalma alapján.

4. táblázat Néhány takarmány táplálóanyag-tartalma (g/kg) (Balikó et al., 2007)

<table>
<thead>
<tr>
<th></th>
<th>Víz</th>
<th>Sz.a.</th>
<th>Zsír</th>
<th>Fehérje</th>
<th>Rost</th>
<th>Szénhid rát</th>
<th>Hamu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legelőfű</td>
<td>780</td>
<td>220</td>
<td>11</td>
<td>44</td>
<td>45</td>
<td>98</td>
<td>22</td>
</tr>
<tr>
<td>Búza</td>
<td>130</td>
<td>870</td>
<td>19</td>
<td>122</td>
<td>23</td>
<td>689</td>
<td>17</td>
</tr>
<tr>
<td>Tej</td>
<td>876</td>
<td>124</td>
<td>36</td>
<td>33</td>
<td>-</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>Burgonya</td>
<td>760</td>
<td>240</td>
<td>1</td>
<td>22</td>
<td>7</td>
<td>197</td>
<td>13</td>
</tr>
<tr>
<td>Szója mag</td>
<td>110</td>
<td>890</td>
<td>190</td>
<td>340</td>
<td>70</td>
<td>250</td>
<td>34</td>
</tr>
<tr>
<td>Extrahált szója</td>
<td>100</td>
<td>900</td>
<td>14</td>
<td>493</td>
<td>33</td>
<td>294</td>
<td>66</td>
</tr>
<tr>
<td>Napraforó</td>
<td>84</td>
<td>916</td>
<td>460</td>
<td>180</td>
<td>155</td>
<td>90</td>
<td>34</td>
</tr>
<tr>
<td>Hús</td>
<td>720</td>
<td>280</td>
<td>42</td>
<td>214</td>
<td>-</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>
Az esszenciális aminosavak mennyisége a szójában és melléktermékeiben nagyobb, mint a gabonákban vagy más növényi takarmány alapanyagokban (triptofán, lizin, cisztein, valin, leucin és tirozin), és ezért az emberi táplálkozásban az általi fehérjék pótlására is alkalmas. A nem teljes értékű fehérjét tartalmazó gabonalisztekhez keverve azok fehérjetartalmának értékét jelentősen növeli. A gabonafehérjéből ugyanis kis mennyiségben vannak jelen olyan fontos aminosavak, mint pl. cisztein, lizin, valin, triptofán, amelyek a szójában jóval nagyobb mennyiségben megtalálhatóak. Vizsgálták a hazánkban azonos termőhelyen termesztett szójafajták beltartalmát. Az analízisekből kiderült, hogy a vizsgált 30 különböző fajta légszáraz szójababban a nyersfehérje 26,8–39,4%, a nyerszsír 16,6–22,3%, a nyersrost 3,6–8,4%, a hamu 4,0–6,0%, a nitrogénmentes kivonható anyagok aránya 16,6–29,9% közötti tartományban volt jelen (Balikó és Fülöpné, 2014). A szója értékét elsősorban a fehérjetartalmára, illetve a fehérje aminosav-összetétele határozza meg. A fehérje vízben jól, közel 90%–ban oldódik. Az albuminok és a globulinok közül az utóbbiak részaránya a nagyobb. A hazánkban rendszeresen termesztett szójafajtákban a legfontosabb négy esszenciális aminosav aránya az alábbi szélsőértékek között alakul: lizin: 1,82–2,86%, metionin: 0,30–0,64 %, cisztein: 0,37–0,73%, treonin: 1,40–2,17% (Balikó és Fülöpné, 2014). Értékes fehérjéjén kívül növeli a szója jelentőségét az is, hogy mintegy 18% nyerszsírt tartalmaz. Olaja felig száradó, 95-100%-ban emészthető, kitűnő étkezési olaj, a mely hatszor annyi oleint tartalmaz, és így 10°C-ig nem zavarosodik, merevedik meg. Említést érdemel továbbá, hogy a szója a lecitin leggazdagabb növényi forrása (olajának 2%-a lecitin), aminek pedig fontos szerepe van az idegek működése tekintetében, a szénhidrátok és a zsírok emésztésében (Láng, 1961).
A szójaoalajban különösen a linolénsav-tartalom magas, és a linolsav aránya is jelentős. A zsírsavak összetétele a következő: 7–10% linolénsav (C-18:3); 51%
linolsav (C-18:2); és 23% olajsav (C-18:1), 4% sztearinsav és 10% palmitinsav. Ennek következtében a szójaolaj fogyasztásának hatása táplálkozás-élettani nem kedvező, könnyen emészthető, gyorsan felszívódik. Kiemelendő továbbá, hogy a szójaolaj finomításakor visszamaradó üledékből kinyerhető lecitin is igen értékes (mennyisége a nyers szójaolaj 2-3%-át teszi ki) (Kurnik, 1970).

A szójaolaj jelentősége nagy, évtizedek óta fontos stabilizáló, emulgeáló szerként alkalmazzák, és antioxidánsokban gazdag. A szójamaggról eltávolítható szójahéj, a korpa is értékes rosttartalmú anyagnak tekinthető. A szója ásványi anyagokban és vitaminokban is viszonylag gazdag. Az ásványi anyagok közül nagyobb mennyiségben káliumot, magnéziumot, kalciumot és foszfort tartalmaz, és mikroelem-tartalma sem elhanyagolható (vas, cink, mangán). A vitaminok közül kiemelkedően nagy a szója B-vitamin-csoport- és E-vitamin-tartalma (Balikó et al., 2007).

3.2.2. A bab (Phaseolus vulgaris L.) származása, hazai termőterülete, tápértéke, összetétele

A világon számos babfajt ismerünk, ezek származási helye Közép- és Dél-Amerika (Bellucci et al., 2014). Magyarországon a közönséges bab termesztése terjedt el, emellett még megtalálható a tűzbab is a köztermesztésben, bár kisebb jelentőséggel. A termesztett babnak két változata különböztethető meg, a bokorbab és a karóbab (Cselőtei et al., 1993; URL7). A veteménybab (Phaseolus vulgaris L.) népies megnevezése: paszuly, paszulyka, fuszulyka. Sok más faj is van, amit röviden babnak neveznek, és rengeteg fajtája is, melyek különböző tulajdonságokkal rendelkeznek. Amerikában őshonos, az indiánok már kb. 5000 éve termesztik. Európába először az 1530-as években került; Franciaországban 1548-ban említik először.
Ezután az európaiak közvetítésével került át később Afrikába, Ázsiába, Ausztráliába (Nwokolo, 1996; Behluli et al., 2016).

Magyarországra 1560 körül hozták be, és gyorsan elterjedt. Elsősorban a kiskertek növénye maradt, régebben kizárólag érett magját fogyasztották, és gyógyászati felhasználása is ismeretes (Cselőtei et al. 1993; URL7). Szárazbabként és mirelit zöldbabként fogyaszthatók (URL7, URL8).

A növényt 2016-ban Magyarországon 874 ha-on termesztették, és ekkor az országos termésátlag 1,83 t/ha volt (URL5). A közönséges bab (Phaseolus vulgaris L.) az alapvető élelmiszernövények közé tartozik. Magas fehérjetartalma (25%) mellett keményítőtartalma is jelentős (55%). Olajtartalma alacsony (1-2%). Elsősorban élelmiszernövény, takarmányozási jelentősége kicsi. Szárazbabként évekig eltartó megfelelő kezelés után (Diaz-Batalla et al., 2006).

A bengáli bársonybab magjának kémiai összetételét és táplálkozási jellemzőit vizsgálták. Az érett magvak 314,4 g / kg nyersfehérjét, 51,6 g / kg nyersrostot, 67,3 g / kg nyers zsírt, 41,1 g / kg hamut és 525,6 g / kg szénhidrátot tartalmaztak. A globulinok és albuminok együtt alkotják a fő tároló fehérjéket (22,7 g / 100 g vetőmagliszt). A globulinnal összehasonlítható az albuminok a valin és a triptofán gazdag forrását jelentették. Mindazonáltal a cistin, a metionin és a leucin mindkét fehérjék frakcióban hiányos volt. A domináns zsírsavak a linolsavak (65,5%) valamint a palmitinsavak (20,16%) (Siddhuraju et al., 1996).

Burundi négy különböző területén termesztett száraz bab (Phaseolus vulgaris) négy fajtáját elemezték a nedvesség, a fehérje, a zsír, a hamu, az ásványi anyagok (kálium, kalcium, magnézium, vas, réz, cink és foszfor), esszenciális anyagok.
aminosavak (izoleucin) tekintetében. A nedvesség, a fehérje, a zsír, a hamu és a szénhidrát átlagos értéke 9,19%, 22,26%, 1,01%, 4,47% és 72,3% volt. Az izoleucin 7,35, leucin 14,49, lizin 13,49, metionin 1,59, fenilalanin 9,85, treonin 9,08 és valin 9,11 mg/g tartalomban találhatóak a növényben. A különböző tápanyagok (bizonyos ásványok kivételével) megegyeztek a világ más területein termesztett száraz babokban található anyagokkal (Simard és Barampama, 1993).

3.3. A hüvelyes növények termesztésének agrotechnikája

Magyarország elhelyezkedése a Kárpát-medencében agrárökológiai és meteorológiai szempontból is előnyös. Az adottságok sokszínű és változatos termelést tesznek lehetővé, mégis a gabonatermesztésre összpontosul az ország agrárintegratív jóléte. Főként a búza és kukorica alkotta bikultúra a jelentős, sok helyen akár monokultúra alkalmazásával is termesztik e két kultúrnövényt. Az utóbbi években azonban megfigyelhetjük, hogy a hüvelyesek vetése, termesztése is előtérbe kerül az agrár-környezetgazdálkodási programban (Balikó, 1998; Balikó, 2015).

A szója legjobb előveteményei az őszi kalászosok: őszi búza, őszi árpa, valamint a silókukorica és az őszi káposztarepce. Közepes előveteménynek ítéltethet a kukorica és a burgonya (az Amerikai Egyesült Államokban...
rendszerint a szóját kukorica elővetemény után termesztik). Magyarországon a gyakorlatban rendszerint két kalászos között (őszi búza - szója - öszi búza sorrend) vagy kukorica elővetemény után termesztik (Balikó, 2015).

Későn lekerülő elővetemények (kukorica) betakarítása után a visszamaradó nagymennyiségű szármaradványt aprítás után azonnal be kell keverni nehéztárcsával a talajba, és el kell végezni a mélyszántást (Bárány, 2013).

Az összel kellően elmunkált talajokon tavasszal jó minőségben tudjuk a magágyat előkészíteni, ennek eszköze lehet az ásóborona, a kombinátort (Bárány, 2013; Kaur et al., 2014).

A foszfor- és káliumtartalmú műtrágyák kijuttatási ideje az őszi alaptalajművelés, a nitrogéntartalmú műtrágyát – különösen jobb minőségű talajokon – elegendő tavasszal, a magágykészítés előtt kiadni. A szója fajlagos foszforigénye magas, felvétele folyamatosan növekszik a tenyészidő végéig. A felvétel maximális mértékét a hüvelykötés – szemtelítődés időszakában éri el. A foszfor nehezen mozog a talajban, hosszabb időt vesz igénybe a feltáródása (átalakulása felvetehető formába), ezért is javasolható a foszfortartalmú műtrágya egy adagban történő őszi kijuttatása, és az alaptalajműveléssel történő bedolgozása, így a téli félév során elegendő idő áll rendelkezésre a felvetehető formába történő átalakuláshoz a téli csapadék hatására (Kolawole 2012; Balikó et al., 2013).
A tápanyagmennyiségek kiszámításakor figyelembe kell venni a talaj tápanyag-szolgáltató képessége mellett az elérhető termésszintet is (Golding, 1905; Balikó, 2015).

A bab esetében a nitrogénműtrágya kijuttatási ideje a kora tavasz. A foszfor- és káliumtartalmú műtrágyák kijuttatási ideje az öszi alap-talajművelés (szántás), a foszfor- és káliumtartalmú műtrágyák növények által felvehető formába történő átalakulásához hosszabb időre van szükség. A foszfor és a kálium nem mosódik ki a talajokból (Iványi et al., 1994).

A fajtamegválasztásban nagyon fontos szerepe van a tenyészidő hosszának. Viszontaink között nagyobb jelentősége a 0 és az I., tehát a korai és a közepes érécsoportnak van (Fülöp, 2001).

A szója vetésének ideje április utolsó dekádja, nem szabad korán vetni az egyöntetű kelés, gyors fejlődés érdekében. Amennyiben a vetést követően tartós lehűlés következik be, a vetéstől kelésig tartó időszak jelentősen meghosszabbodhat, a talajban sokáig elfékvő magoknál, ill. a fejletlen, legyengült növényeknél csírakori betegségek léphetnek fel, megnövekedhet a pusztulás aránya (Balikó et al., 2013).
Az alkalmazott vetésmélység 3-5 cm. A szóját 450-550 ezer/ha csíraszámmal kell vetni, ezermagtömegtől függően 90-110 kg/ha a szükséges vetőmagmennyiség (URL2; URL3; URL4; Balikó et al., 2013).

A korai érésidejű fajták augusztus végén, szeptember elején, a Magyarországon termesztett középérésű fajták pedig szeptember közepén, végén érnek. A szója betakarítását legkevesebb veszteséggel a magok 16-18%-os nedvességtartalma mellett végezhetjük el. A túlérett szója csak veszteséggel és magsérülésekkel takarítható be (Bárány, 2013).

A bab vetése május elején–közepén történik. Vethető fészekbe (több mag egy helyre), ikersorosan vagy szimpla sorba. Sortávolsága 40-70 cm lehet, vetésmélysége 4-6 cm. Zöldbab termesztése esetén a vetéstől a szedhetőségig nagyjából 2 hónap telik el. Szakaszos vetéssel a szedhetőség kitolható. Zöldbabtermesztésnél a vetett csíraszám 500-600 ezer darab hektáronként (Cselőtei et al., 1993).

Közepes vízigényű növény, de az öntözést meghálálja, így növelhető a termésbiztonság. Másodvetésben öntözés nélkül nem termeszthető biztonságosan (Cselőtei et al., 1993). A betakarítás kisüzemekben kézzel történik, sok fajta nem is alkalmas a gépi betakarításra (például a hüvely leér a földre, kacsokat növeszt, stb). A zöldbab esetén az arra alkalmas fajtáknál jellemző a gépi betakarítás (Cselőtei et al., 1993).

A szárazbabokat is géppel takarítják be. Azok a fajták alkalmasak erre, melyek levele lehullik az éréskor, és a magok nem peregnek ki a hüvelyből. Szárítani akkor szükséges, ha a mag nedvességtartalma 14%-nál magasabb. A magot a tároláskor a babzsíszik ellen feltétlenül gázosítani kell (Cselőtei et al., 1993; Moreira és Cardoso, 2016; URL7; URL8).
3.4. A hüvelyesek ízeltlábú kártevői és károsításuk

Ahogy a bevezetőben is említésre került, a takarmányként hasznosított szója kártevői akár 10-15%-os terméskiesést is előidézhetnek, de a mag minőségét rontó hatás ennél is nagyobb értéket érhet el. Magyarországon a gyakorlat nem fordít nagy figyelmet a kártevők elleni védekezésre, mivel a ráfordítás költségei nem állnak arányban az elérhető terméstöbblettel. Az utóbbi években, azonban az így fellazuló agrotechnikai fegyelem, a nem megfelelő vetésváltás, a külföldről behozott (és csávazás nélkül elvetett) fajták magjával behurcolt betegségek kezdenek jelentős mértéket ölni. A kártevők elszaporodásához hozzájárul az enyhe tél és a meleg, száraz tavasz. Ezek a tények mind a klímaváltozást érzékelik, ami kétségtelenül hozzájárul a rovarok jobb életfeltételeihez és nagyobb mértékű kártételekhöz (Casteel, 2010; Bidart és Imeh-Nathaniel, 2008). Jó agrotechnikával és a kisebb befektetést jelentő magescavázással már fontos lépést tehetünk a mennyiségi és minőségi veszteségek csökkenése érdekében (Balikó és Fülöpné, 2009).

A rágó kártevők, mint a babzsizsik (Acanthoscelides obtectus) a növény generatív részeivel táplálkozik, ezáltal a mag tápláló értékét csökkenti. A vándorpoloska (Nezara viridula) szintén a generatív részeken is szívogat, ezáltal a magban történne elváltozások. A viráglégy (Delia platura) esetében a nyűvek elsősorban a szár belsőrébe károsítják, így módon a növény anyageseréjét, tápanyag felvételét, növekedését, fejlődését zavarják meg (Kuroli, 1997; Pénzes, 1997).

A hüvelyesek jelentősebb kártevői magyarországi termesztési körülmények között a következők:

Az elvetett magot és a csíranövényt pusztítja a fekete tücsök [Melanogryllus desertus (Pallas, 1771)], a sároshátú bogár [Opatrum sabulosum, (Linnaeus, 1761)], a gyökérrágó gyászbogár [Pedinus femoralis (Linnaeus, 1767)], a hamvas vincellérbogár [Otiorrhynchus ligustici (Linnaeus, 1758)], a fekete
barkó [Psalidium maxillosum (Fabricius, 1792)], a hegyesfarú barkó [Tanymechus palliatus (Fabricius, 1787)], a kukoricabarkó [Tanymecus dilaticollis Gyllenhal 1834], a csipkészőbarkó- (Sitona spp.) és a bagolylepkefajok (Noctuidae) (Kuroli, 1997; Pénzes, 1997).

A gyökérzetet károsítják a cserebogarak (Melolontha spp.), a pattanóbogarak (Elateridae spp.), a gyászbogarak (Tenebrionidae spp.), a vincellérbohitérbogarak (Otiorrhynchus spp.) és a bagolylepkefajok (Noctuidae) lárvái (Kuroli, 1997; Pénzes, 1997; Carneiro et al., 2010).

A növények vegetatív részeit fogyasztják a borsó- vagy lucerna-levélét [Acyrtosiphon pisum (Harris, 1776)], a fekete bükönylevél [Aphis craccivora Koch, 1854], a mezei poloskák (Miridae spp.), a holló bogár [Epicauta verticalis Beauregard, 1885], a sároshátú bogár [Opatrum sabulosum (L. 1761)], a gyökérzálog gyászbogár [Pedinus femoralis (L., 1767)], az ormányosbogarak (Curculionidae spp.), a muszkamoly [Loxostege sticticalis (L., 1761)], a bagolylepkefajok (Noctuidae) lárvái, és a közönséges takácsatka (Tetranychus urticae Koch, 1836) (Bognár és Huzián, 1990; Kuroli, 1997; Pénzes, 1997; Seprős, 2001).

Az amerikai fehér szövőlepke [Hyphantria cunea, (Drury 1773)] inváziós fajként az éghajlati zónák átalakulása miatt rohamosan terjed Európában, ezzel együtt a tápréhelyekre is szélesedik (Szalay-Marzso, 1971). A második nemzedéke a sörzát sem kiméli. Rendszerint foltokban lepi meg augusztusban, különösen az erdősávok, fasorok közelében lévő szójátéblákat (Kurnik, 1962). A sörzás virágzata és termése táplálékul szolgál a mezei poloskáknak (Miridae spp.), a gödrözshátú bükkönyesziszínek [Bruchus rufimanus, Boheman 1833], az akácmolynak [Etiella zinckenella (Treitschke, 1832)], a közönséges takácsatka (Tetranychus urticae Koch, 1836), a levélűfajoknak (Aphidina spp.), a gamma- [Autographa gamma (L., 1758)], a somkóró- (Heliothis maritima Graslin, 1855) és a káposzta-bagolylepkefajok [Mamestra brassicae (L., 1758)] (Kuroli, 1997).
A tárolás során okozhatnak problémát a borsó-, [Bruchus pisorum, (L. 1758)] illetve a babzsizsik (Acanthoscelides obtectus, Say 1831) (Cselőtei et al., 1993; Sáringer, 1998).

3.4.1. A vizsgálatok tárgyát képező kártevők jellemzése

A babzsizsik (Acanthoscelides obtectus Say, 1831)

A babzsizsik (Acanthoscelides obtectus Say) a rovarok (Insecta) osztályának a bogarak (Coleoptera) rendjébe és a levélbogárfélék (Chrysomelidae) családjába tartozó faj. A babzsizsik világszerte előforduló kártevő és inváziós faj. Őshazája a trópusi Amerika volt, onnan terjedt el minden olyan országban, ahol az éghajlati viszonyok a szabadföldi fejlődését, a terménytárolási szokások pedig az áttelelését tették lehetővé (Alvarez et al., 2005; Oliveira et al., 2013).

Megfelelően magas téli középhőmérsékletű vidékeken szabadban, a betakarításkor kipergett, fertőzött babszemekben is képes áttelelni. Imágója és lárvája egyaránt károsít, de a nagyobb kárt a lárva okozza (Wightman és Southgate, 1982; Graham és Ranalli, 1997).

A babzsizsiket fejlődése és táplálkozása a hüvelyes (Fabales) magvakhoz köti, bár szakirodalomban szerint círokban és kukoricában is megél (Sáringer, 1998). Kedvenc tápnövénye a bab, de észlelték lóbabban, szójában, borsóban, lencsében, csírcseriborsóban, lednekben, bükkönyben, csillagfűrtben és tehénborsóban is. Egy-egy babszemben akár tíz lárva is elélhet, s a szitává lyuggatott magban a héj alatt, az imágók kirepülése után, csak rágesálék és ürülék marad (Sáringer, 1998).

A babzsizsik kárképe abban tér el a borsózsizsikétől, hogy a babszemek található ablakok és lyukak átmérője kisebb, valamint a borsózsizsiknél magányszámuk röpnyuk a babszemek csak egy részénél található. A babzsizsikek a
legtöbb esetben többedmagukkal fejlődnek egy babszemben, így az esetek túlnyomó többségében több ablak, illetve lyuk látható a szem felületén. Egy magban 15-30 lárva is fejlődhet (Sáringer, 1998; Camargo, 2017).

Készültek kutatási munkák arról, miszerint a különböző babfajták „zsizsikérzékenysége” eltérő, vagyis a különböző fajták bizonyos rezisztenciát mutatnak a babzsiszik károsításával szemben, ami a bennük található antinutritív anyagokra vezethető vissza (Odagiu és Porca, 2003; Guzzo et al., 2015).

A közönséges takácsatka (Tetranychus urticae Koch, 1836)

A közönséges takácsatka (Tetranychus urticae Koch) egyike a számos növénytel táplálkozó atkafajoknak. A kártevő a takácsatkák (Tetranychidae) családjának legismertebb tagja (Gutierrez, 1985). A Trombidiiformes (bársonyatka-alakúak) rendjébe és az Arachnida (pókszabásúak) osztályába tartoznak (Gutierrez, 1985). A teljes DNS kódját 2011-ben térképeztek fel, a pókszabásúak közül elsőként. A közönséges takácsatka Eurázsiában őshonos, de mára kozmopolita lett (Koveos et al., 2008; Migeon et al., 2010; Sharma és Pati, 2012).

A közönséges takácsatkák rendkívül aprók, szabad szemmel, mint vöröses vagy zöldes pontok alig láthatók a növény levelein vagy szárán. A kifejlett nőstény atka kb. 0,4 mm hosszú. A faj előfordulhat növényházakban, trópusi és mérsékelt övi területeken, finom hálót szőve a növények levelein és a levelek alatt (Witters et al., 2007; Fasulo és Denmark, 2009; Li et al., 2010). Polifág faj. Lágy- és fásszárú növényeken egyaránt előfordul. Egyedszáma viszonylag rövid idő alatt gyorsan emelkedhet, meglepetésszerű károkat okozhat (Van den Boom et al., 2003; Li et al., 2010, Sato et al., 2015).

Szabadföldi körülmények között a közönséges takácsatka a káros szintet július, augusztus folyamán éri el, amikor a populáció belül már minden fejlődési

A fésűslábú viráglégy [Delia platura (Meigen, 1826)]

A vándorpoloska [Nezara viridula (Linnaeus, 1758)]

A faj a szipókás rovarok (Hemiptera) rendjébe, a poloskák (Heteroptera) alrendjébe, a címeres poloskák (Pentatomomidae) családjába, a Nezara nembe tartozik (Panizzi, 2008). Bűzmirigyeinek váladéka védekezési funkciót tölt be. Zavaráskor elriasztja ellenségeiket, támadóikat. A kifejlett rovar kb. 1 cm
különböző repedésekben, lakásokba, házakba repülnek be. Március, április hónapokban jönnek elő, táplálékot keresnek, majd új nemzedéket hoznak létre (Todd, 1989). A szúró-szívó szájszervű kártevők ellen a kémiai védekezés a leghatásosabb. A piretroidok közül a leghatékonyabb a kapszulázott lambda-cihalotrin, de a neonicotinoidok is felhasználhatóak a kémiai védekezés során (Capinera, 2001; Vandekerkhove és De Clercq, 2004). Több forrásmunka a biológiai védekezés pozitív eredményéről is beszámol. Többek között Indonéziában és az USA-ban a faj parazitoidjaival próbálják visszaszorítani a kártevőt (Van den Berg et al., 1995).

3.5. A szója táplálóanyag-tartalma, antinutritív anyagai

A hüvelyesek fehérjetartalma szárazanyagra vonatkoztatva átlagosan 20-40 %. A fehérjetartalom a babokban 20-28 %, a borsóban 21-28 %, míg a szójában és a csillagfűrtben 38-40 % (Duranti, 2006). A hüvelyesekben található fehérjék három csoportba sorolhatók: tartalékfehérjék, biológiailag aktív fehérjék és allergén fehérjék. A tartalékfehérjék a növény fejlődése során a magvakban képződnek és a membrán organellumokban (protein testek) raktározódnak. Legtöbbjük nem rendelkezik katalitikus aktivitással, a növény csírázása során hidrolízisen mennek át és annak további fejlődése során szén, nitrogen és kénforrásként szolgálnak (Duranti és Gius, 1997). A hüvelyesek két fő tartalékfehérje frakciói: az albuminok és a globulinok (Montoya et al., 2010). A hüvelyesekben jelentős arányban találhatóak olyan biológiailag aktív komponensek, amelyek ugyan nem tápanyagként szolgálnak, de pozitív vagy negatív hatással lehetnek a humán és az állati tápanyaghasznosításra. Ettől a pozitív vagy negatív hatástól függően a szakirodalomban többféle megnevezést használnak ezekre az összetevőkre, mint például toxikus komponensek (Liener, 1976; Liener et al., 1986), antinutritív faktorok (Thompson, 1993; Shaidi, 1997; Roy et al., 2010), nutritív faktorok vagy
Azokat a biológiailag aktív vegyületeket nevezzük antinutritív faktoroknak, melyek tartós, folyamatos fogyasztása negatív hatással van a tápanyagok hasznosulására (Erdaw et al., 2017). Ezek lehetnek fehérje természetű, illetve nem-fehérje természetű antinutritív komponensek (Duranti et al., 1998). A nem fehérje természetű antinutritív komponensek lehetnek fitátok, alkaloidok és fenolos komponensek, mint például a tanninok. A legtöbbet tanulmányozott antinutritív komponensek a fehérje természetű enzim inhibitorok és a lektinek (Muzquiz et al., 2012). Az antinutritív fehérjék hosszú ideig tartó, folyamatos etetetése a kisérleti állatokban a tápanyag hasznosulás elmaradását, gyenge növekedési erélyt, csökkent emészthetőséget és felszívódást eredményezi. Megfigyelték továbbá, a tápanyagok lassabb továbbítását a tápcsatlánban, a vékonybőf alakulását és károsodását, illetve kóros hasmenés kialakulását is. Mivel e komponensek technológiai kezelése során történő viselkedésével (hőstabilitás, kémiai vagy enzimes kezelés, csiráztatás, fermentáció, stb.) kapcsolatban főleg laboratóriumi kísérletes adatok állnak rendelkezésre, ezért a közelmúlt célzott kutatásaiban a tápcsatlánval való kölcsönhatásuk megismerése került inkább előtérbe. Ezen belül is az anyagcsere, illetve a luminális antigénekre kialakult immunválasz minősége kapott hangsúlyt. Fontosabb antinutritív anyagok: a proteáz inhibitorok, azon belül pedig a tripszin inhibitorok (ami elsősorban a tripszin enzim működését gátolja, így csökkenti a takarmány fehérje emészthetőségét), kimotripszin inhibitorok, hemagglutinin, fitohemagglutinin, felfűvódást, belgázt termelő ún. flatulens anyagok, nem azonosítható növekedésgátlók, golyvásodást előidéző ún. goitrogének és egyéb antinutritív faktorok, lektinek, glükoproteinek, szojin, fazin (Balikó et al., 2007). A szerin proteáz inhibitorok antinutritív tulajdonságuknál fogyva stabil kötés kialakításával az olyan emésző enzimek aktivitását gátolják, mint a tripszin és a kimotripszin. A
tripszin inhibitoroknak különböző izoformáit azonosították hüvelyesekben (Guillamón et al., 2008a; Muzquiz et al., 2012). Ezek az inhibitorok eredetileg a hasnyálmirigy fehérjebontó enzimének működési sebességét csökkentik, blokkolják/gátolják (Keith és Bell, 1988). A szója esetében a különböző hőérzékenységű Kunitz- és a Bowman-Birk-inhibitorok mellett mintegy tízféle proteázgátló anyag van, mennyiségük általában a növények fehérjetartalmával arányos. Mivel a proteázgátlók maguk is fehérjék, többé-kevésbé hőérzékenyek (Koide és Ikenaka, 1973). Az antinutritív anyagok inaktiválásának lehetősége nagyon fontos. Szerencsére ezen anyagok legnagyobb részben hőre érzékenyek (proteáz inhibitorok, tripszin inhibitorok, kimotripszin inhibitorok, haemagglutinininek, lektin, golyvaképző tényezők, antivitaminok), tehát inaktiválhatóak, de a hőnek ellenállók (fitinsav, cseranyagok, favizmus tényezők, vicin, konvcin, ösztrogén, izoflavon származék, flatulencia faktorok, oligoszacharidok, szaponinok) okozta problémák sem mellékesek. A hőkezelt mag fehérjéje viszont jól hasznosul és kitűnő biológiai értékű (Borodin et al., 2013). A szójabab enzimgátlói 20%-os nedvességtartalom esetében 15 perces gőzöléssel, vagy 3-4 atmoszférás nyomáson, 121°C-on, néhány perc alatt denaturálódnak, vagyis hatástalaníthatóak. A hőérzékeny antinutritív tényezők kedvezőtlen hatásai tehát főzéssel, gőzöléssel megszüntethetők. Kísérleti adatok igazolják, hogy az antinutritív anyagokban bekövetkezett csökkenés hatására mennyire jelentősen javult a fehérjehatékonysági arány (PER-érték) és/vagy a nettó fehérjehasznosulás (NPU). Mindkét értékben a javulás jelentős (Langsdorf, 1981; Balikó et al., 2007).

Számos feldolgozott termék található a boltok polcain, amely a szójababot nyersanyagként tartalmazza, emberi és állati eredetű élelmiszerként áll rendelkezésre. Jelentős vitamin-, ásványianyag- és fehérjetartalmának köszönhetően az Újvilágban a fogyasztása gyorsan növekedett (Vural et al., 2017).

A szójabab fizikai-kémiai jellemzői, amelyek befolyásolják a fehérje viselkedését az élelmiszerrendszerében feldolgozás, gyártás, tárolás és előkészítés során, az abszorpció, oldhatóság, gélképzés, felület aktivitás, ligandumkötés és filmképzés. Ezek a tulajdonságok tükrözik a fehérjék összetételét és kölcsönhatásukat más élelmiszer-összetevőkkel, valamint azokat a feldolgozási kezeléseket és a környezet befolyásolja. Mivel a funkcionális tulajdonságokat az összetevők fehérjeinek összetétele, szerkezet és konformációja befolyásolja, a komponens fehérje fizikai tulajdonságainak szisztematikus felismerése célszerű az egyes funkcionális vonalak mechanizmusának megértéséhez (Kinsella, 1979).

Fontos tudományos eredmény volt, amikor a XIX. század vége felé megállapították, hogy a különböző eredetű fehérjék táplálóértéke eltérő, továbbá, hogy a különböző fehérjék egymást nem képesek ugyanolyan mértékben helyettesíteni. Vagyis minden fehérjefélének különböző biológiai értéke van (Rubner, 1897), azaz eltérő minőségű. A gabonafélék kis
fehérjetartalmához alacsonyabb biológiai érték kapcsolódik, mint a nagyobb fehérjetartalmú, de többnyire azonos biológiai értékű olajos és hüvelyes magvakhoz (Anderson és Chen, 1979). A szójabab (full-fat), illetve az extrahált szójadara-fehérje biológiai értéke az összes takarmányfélék között kiemelkedő (Izsáki, 2004; Balikó et al., 2007).

A biológiai érték (biological value = BV) mutatja a fehérjék megemésztett, hasznosuló részének %-át. Ezek alapján a külföldi eredetű fajták biológiai értékének átlaga 76,4, a hazai fajtáké viszont 80,3. (Balikó et al., 2007). A PER (protein efficiency ratio) az elfogyasztott fehérje tömegegyésége által előidézett testtömeg-gyarapodást kifejező értékszám. E mutató, ill. a nettó fehérjehasznosítás (net protein utilization = NPU) az elfogyasztott fehérjének a szervezetben hasznosuló %-os mennyiségre enged következtetni (Langsdorf, 1981).

Az extrahált szójadara és a full-fat szója bel tartalma között eltérés van, ami alapvetően a zsírtartom különbségének következménye. Ennek megfelelően a full-fat szója metabolizálható energiatartalma mintegy 15-17%-kal nagyobb az extrahált szójadarához viszonyítva. Ez önmagában véve kedvező is, hiszen a szőjaolaj jól hasznosuló, zsírsavvisszetétele pedig biológiai szempontból igen értékes. Ugyanakkor azzal kell számolni, hogy a full-fat szója fehérjetartalma 19%-kal kevesebb, s ebből eredően az aminosavértékek is csökkenek, bár arányaik azonosak maradnak. E két szójaterméket tehát nem szabad azonos %-os arányban helyettesíteni egymással Az extrahált szójadara és a full-fat szója helyettesítése ma már nem tömeg alapon (1:1,23) történik, hanem a takarmány fehérje és főként aminosav tartalmának, valamint energia tartalmának figyelembevételével (Ohren, 1981; Balikó et al., 2007; Riaz et al., 2017).

Haltakarmányozásban betöltött szerepe:
E témával világszerte igen sokan foglalkoznak és alakítottak ki halfajonként különböző keverékeket, melyekben a szója kiemelkedően fontos szerepet játszik. Ennek oka nemcsak értékes beltartalma, hanem a szójafehérje erős emulziós képessége is, ami lehetővé teszi, hogy a rendszerint granulált takarmányszemcsék a vízbe kerülve nem esnek szét oly gyorsan. Ilyen jellegű kísérleteket hazánkban főként a hazai halgazdaság kiemelkedő kutatója, Szalay (1957) végzett, aki elsőként dolgozta ki a harcsaivadék-nevelés kizárólag mesterséges táppal való, világviszonylatban is új módszerét, továbbá a ketrecses haltartást és az ahhoz kapcsolódó takarmányozást (Pintér, 2002).

Bonvini et al (2017) vizsgálták a full-fat szója felhasználási lehetőségét szivárványos pisztángokkal. Takarmányukba 10% full-fat szóját kevertek, illetve a keverékben lévő 15% hallisztet full-fat szójával helyettesítették. A kontrol takarmánykeverék fehérjetartalmánál e két full-fat szójacsoport fehérjeellátása mintegy 5-6 %-kal volt kevesebb, a halak növekedésében, testsúlyában szignifikáns különbösg volt kimutatható. A takarmány hasznosulását illetően a legjobb eredményt a full-fat szójás takarmánnyal érték el, s ez a takarmányozás hozta a legnagyobb arányú jövedelmet (Chen et al., 2017).

Hazánkban a legelterjedtebb technológia a félintenzív tavi haltermelés, melynek lényege a tavak biológiai produkciójának fokozása trágyázással, és az így előállított természetes táplálék kiegészítése abraktakarmányokkal. Ezek a kiegészítő takarmányok alapvetően szénhidrát forrást biztosítanak a halak számára. Amennyiben a feletetett abraktakarmány nem egészül ki a tóban megtermelődő fehérjeforrással, a túlzott energia bevitel a húsminőség romlásával jár, a halak elzsírosodását okozza, valamint a rosszul hasznosuló táplálóanyagok révén növekvő környezeti terheléssel számolhatunk. Ez korlátot szabhat a fehérjében alacsony abraktakarmányok alkalmazásának (Varga et al., 2016).
Ahhoz, hogy a hozamokat fokozzuk, a legkézenfekvőbb eljárás az etett takarmányok minőségének javítása. Egyik lehetőség a kiegészítő takarmány fehérjetartalmának növelése. A magasabb fehérjetartalmú növényi eredetű takarmányok (pl. hüvelyes magvak, pillangósok, olajos magvak darái) a gabonához képest nagyobb hozamokat eredményezhetnek. Azonban a pillangósok gyenge emészthetősége, gyakran magas antinutritív anyag tartalma miatt nem feltétlenül bizonyulnak versenyképes takarmánynak (Krupa, 2008). Alkalmazásuk akkor lehet kifizetődő, ha ugyan emberi tápláléknak nem, de állati takarmányozásra még alkalmas állapotban, olcsón sikerül beszerezni. A hüvelyesek magas fehérjetartalmuknak közönhetően széles körben alkalmazott takarmány alapanyagok. A szójával (Glycine max) és borsóval (Pisum sativum) ellentétben a babot (Phaseolus vulgaris) elsősorban emberi fogyasztásra termesztik, csak ritkán kerül felhasználásra takarmányokban. Eddigiekben csak kevés vizsgálat történt a bab halakkal történő etetésével kapcsolatban. A közelmúltban afrikai harcsa (Clarias gariepinus) (Yusuf et al., 2016; Solomon et al., 2017), szivárványos pisztráng (Onchorhynchus mykiss) (Ouraji et al., 2013; Magalhães et al., 2016) és atlanti lazac (Salmo salar) (De Santis et al., 2016) takarmányozásának esetében vizsgálták a szója kiváltásának lehetőségét különböző hüvelyes növényekkel. 16 hetes takarmányozási kísérletet végeztek annak vizsgálatára, hogy a bab felhasználása a halliszt helyettesítőjeként alkalmazható-e tilápia etetésében. Az 50% babot tartalmazó táppal etetett nilusi tilápia hasonló növekedést mutatott a halliszt tefogyasztó egyedekkel szemben. A takarmánybab beépítése az étrendbe jelentősen befolyásolta a tilápia zsírtartalmát valamint energiatartalmát (Gaber, 2006). A bab magokat pörkölték illetve autoklávozták, és az afrikai harcsa táplálékfehérje forrásaként értékelték. A vizsgálat során nem tapasztaltak elhullást, és kielégítő étrend-elfogadást figyeltek meg. A különbségeket súlygyarapodás, fajlagos növekedési sebesség, takarmány- és fehérje-hatékonysági arányokban találtak, de nem volt
szignifikáns (P> 0,05). A nyersfehérje emészthetősége és az étrendek bruttó energiatartalma magas volt (> 85%), és hasonló volt a hallisztéhez. A harcsa hasított test összetétele nem változott szignifikánsan (P> 0,05) az étrend- kezelések között. Az eredmények azt mutatják, hogy mind az autoklávozott, mind a pörkölt babfehérjeforrásként elfogadható volt, és a halliszt 80% -át helyettesítheti a harcsa takarmányában (Fagbenro, 2009).

3.6. A szója szervesanyag-összetételét befolyásoló hatások elemzése

3.6.1. Az abiotikus elemek és a tápanyag-utánpótlás hatása a szója beltartalmi összetevőinek változására

A szója nem megfelelő fehérjeösszetétele (fehérje amínosav tartalma, a speciális, antinutritív fehérjék jelenlété, ezek mennyiségének eltolódása) számtalan tényezőn keresztül befolyásolja a vele táplálkozó élőlény élettanát, fejlődési, növekedési erélyét. A fehérjeszintézis zavarát több tényező is okozhatja, mint pl a N-hiány, a kártevők (szipókás) kártétele. Az amínosavak, fehérjék szintézisének megváltozása, pedig kihat a növény megfelelő növekedésére, fejlődésére, mennyiségi és minőségi paramétereinek kialakulása során (Solano et al., 2013). Több élő és élettelen tényező hat e beltartalmi struktúra alakulására, esetleges átrendeződésére, melyekkel az alábbiakban kívánunk foglalkozni.

Az abiotikus elemek közül elsősorban a víz, a talaj, az éghajlat, a makro- és mikrotápanyagok a meghatározó, beltartalomra ható tényezők (Xu et al., 2015).

A víz okozta stresszhelyzet (belvíz, pangó víz stb.) a szója fehérje-, illetve olajtartalmában okoz jelentős mértékű változást (Sionit és Kramer, 1975; Rose, 1988). A táplálálóanyag-tartalom megváltozása elsősorban azért okoz gondot,
mert pl. kisebb fehérjetartalom esetén több szóját vagy más fehérjeforrást (is) kell alkalmazni, ami megnöveli a takarmánykeverék árát. Ugyancsak drágítja a keveréket, ha a kisebb zsírtartalmú full-fat szója használatakor további olajkiegészítésre van szükség.

Az oxidativ stressz állapotok szintén jelentősen károsítják a szója növények fehérjetartalmát (Evans et al., 1999).

A növények autotrofikus és fotoszintetikus szervezetek, amelyek mind termelnek cukrot, mind pedig fogyasztanak. Az oldható cukrok nagyon érzékenyek a környezeti terhelésekre. A szacharóz és a hexózok kettős funkciót játszanak a génszabályozásban, amint azt a növekedéshez kapcsolódó gének felszabályozása és a stresszel kapcsolatos gének lefelé történő szabályozása jellemez. A növekedést és stresszt érintő gének a cukrok összehangoltan szabályozzák. A növények érzékelik és reagálnak a környezeti tényezőkre a cukorérzékelő mechanizmusok segítségével (Prado et al., 2009). Vizsgálták a káposzta palánták fagyasztási toleranciája és a cukortartalom közötti kapcsolatot. A nem fagyálló, alacsony hőmérsékleten (5°C) kitett palánták -6°C-ig fagyasztási toleranciát szereztek. A szacharózt, a glükózt, a fruktózt és a myo-inozitot káposztalevélben oldható cukorként észlelték, és az
összes oldható cukor, kivéve a myo-inozit és a keményítő, fokozatosan emelkedett a hideg akklimatizáció során, így azok szintje pozitívan korrelált a fagyasztási tolerancia mértékével. Az indukált fagyasztási toleranciát nem az ontogenetikai változások, hanem a hideg-akklimatizáció jelentette. Ezek az eredmények azt mutatják, hogy a káposztalevél cukortartalma pozitívan korrelál a fagyasztási toleranciával (Sasaki et al., 1996).

3.7. Az ízeltlábú károsítók hatása termesztett kultúrnövényeink, különösen a szója beltartalmi összetevőire, valamint a klímaváltozás hatása a rovarkártevők megjelenésére

A növénytermesztés intenzívebbé tétele a növekvő kereslet kielégítése érdekében, a termőterületenkénti termelékenység növelése lehetetlen feladat lenne a kártevők elleni védekezés egyidejű fokozása nélkül (Oerke és Dehne, 2004). A hüvelyes növények, így a szója károsítóinak rangsorában kiemelt helyet kapnak az ízeltlábú fajok. A több, vegetatív szervet (Delia platura, Tetranychus urticae) támadó faj mellett számos, közvetlenül a generatív szerveket (Nezara viridula) (virág, termés) károsító faj ismert (Pope, 1998, Abudulai et al., 2012). Míg az előbbi csoport képviselői közvetve – a tápanyag és vízfelszívás dinamikájának megzavarásán keresztül – befolyásolják a termés mennyiségi és minőségi paramétereit, addig az utóbbi halmazba tartozó kártevők szívogatása, rágása közvetlenül hat a hüvely kialakulásának folyamataira, a termés szerves összetevőinek alakulására. A szója értékes fehérjeösszetételét elsősorban a szipókás kártevők veszélyeztethetik (Valenciano et al., 2004; Biswas, 2013; Liu et al., 2015).

Nemzetközi szakirodalomban a búza fehérjékre gyakorolt ízeltlábú rovarok káros hatásairól lényegesen több cikk található. Az alábbi fejezetben
szemléltetem, hogy a szipőkás kártevők milyen változásokat idézhetnek elő a kultúrnövényeink beltartalmi értékeiben.

Egyik jelentős szipőkás kártevő, mint az *Eurygaster maura* által károsított hat kenyér búza (*Triticum aestivum L.*) fajtájú glutén fehérjék hidrolízisét savas poliakrilamid gélelektroforézissel (A-PAGE) és nátrium-dodecil-szulfát poliakrilamid gélelektroforézissel (SDS-PAGE) vizsgálták. Az elektroforézis eredményei azt mutatták, hogy a károsított proteolitikus enzimek a gliadin és a glutenin fehérjékre negatív hatást gyakoroltak (Sivri et al., 1998).

A poloskák által okozott károsodás glutén hidrolízist eredményez, amely különböző bomlástermékeket produkál. A gluténtartalma és a gluténminőséget gluténindexként értékelik a nedves glutén különböző intervallumokra történő inkubálása után (0, 1, 2, 3, 7 és 24 óra). Ezzel párhuzamosan az inkubálás során gluténhidrolízissel felszabaduló vízoldható termékeket méretkizárásos nagy teljesítményű folyadékkromatográfiával és SDS-PAGE-val elemezték. Az eredmények azt mutatták, hogy a nedves glutén mennyisége a káros búzából izolált glutén esetében is állandó maradt, míg a sérült glutén glutén indexe az inkubációs idővel egyenletesen csökken, ami intenzív fehérje hidrolízisre utal (Aja et al., 2004).

Kutatási eredmények igazolják, hogy az *Aelia* és az *Eurygaster* poloskák által károsított búza fajtáknak nem változott számottevően az amiláz aktivitása, úgy tűnik, hogy az amilolitikus enzimek nem vesznek részt a károsodott búza megváltoztatásában (Rosell et al., 2002a; b).

A vándorpoloska károsítása elsősorban a zöldborsó és a szója termesztése során okozhat termésminőségi problémákat (Panizzi et al., 2000).

Kísérleteztek arra vonatkozóan, hogy különböző nagyságú szójákat károsítottak vándorpoloskával. Ennek eredményeképpen a statisztikailag szignifikáns különbség a vetőmag-hozamban és a minőségben volt tapasztalható a vándorpoloska táplálkozásának következtében a hüvelyek megjelenésekor (Thomas et al., 1974).
A közönséges takácsatka, mint veszélyes kártevő, a szója terméshozamát, illetve a belőle készült takarmányok, különféle tápok, kiegészítők értékét képes csökkenteni. A takácsatka károsításának hatására a növényben a teljes oldható cukor-, illetve a keményítőtartalom növekedni kezd, a levelek foszfor-, illetve nitrogéntartalma pedig csökken (Hildebrand et al., 1986a; 1986b). A közönséges takácsatka által károsított levelek idő előtt elszáradnak, lehullanak, csökken az asszimiláló felület, illetve a növény klorofilltartalmának csökkenése súlyos anyagcserezavarokhoz vezet (Hildebrand et al., 1986b; Sebestyén és Pénzes, 1998). Egy nemzetközi vizsgálat eredménye szerint az atka által károsított szójában drasztikusan emelkedik a teljes oldható cukrok és a keményítő mennyisége, és ezzel párhuzamosan csökken az összes nitrogén és foszfor szintje a levelekben. Növekvő, atka okozta károk csökkentették a levelek klorofilltartalmát (55,26%-kal) és még ennél is drámaibb módon a levelek karotinoidtartalmát (79,3%-kal). Az atkák támadásával szemben a növény válasza a hiperszenzitív reakció, ebből következően pedig csökkent a levél klorofill, valamint karotinoid tartalma (Hildebrand et al., 1986a, b). Egy korábbi tanulmány leírta, hogy a T. urticae kártételére ellenállóbb szójafajtákon a kezdeti karotinoid- és klorofilltartalom csökkenése nagyobbnak mutatkozott, mint a károsítóra érzékenyebb növényekben (Hildebrand et al., 1986a, b).

Ezzel párhuzamosan meg kell jegyezni, hogy Közép-Európában a szója növényvédelmi technológiájában nincs előre tervezett rovarölő szerves védekezés, mivel a ráfordítás költségei nem állnak arányban az elérhető terméstöbblettel (Balikó et al., 2013). Az utóbbi években azonban az időjárási anomáliák, az agrotechnikai fegyelem fellazulása, a vetésváltási szabályok nem megfelelő betartása figyelemre méltó mértéket öltöttek, amely e felfogás átértékelését sürgeti (Balikó, 2015).

Az elmúlt évtizedek klimatikus változásai és fokozódó emberi tevékenysége új, idegenhonos fajok megtelepedését okozta, hozzájárulva a

A növényvédelemben megfigyelhető változások a környezet, hőmérséklet hatására minden valószínűség szerint folytatódni fognak, a változás üteme a klímaváltozásnak köszönhetően várhatóan nőni fog (Gáborjányi et al., 2007).
3.8. Modern diagnosztikai módszerek, képalkotás a kártétel-diagnosztizálás szolgálatában

A modern diagnosztikai módszerekkel képesek vagyunk a növények, növényi részek anatómiai felépítésében vagy élettani folyamataiban bekövetkező változásokat detektálni úgy, hogy közben a növény nem sérül. A beteg növényi rész megtekintése során a kép a látható fény tartományában keletkezik. A kép „alkotására” azért van szükség, mert még maguk a kép létrehozására szolgáló fizikai jelenségek – a röntgensugarak elnyelődése, az ultrahangok visszaverődése, az izotópopo gamma-sugárzása, a protonok rezonanciája – is láthatatlanok. A folyamat során a röntgensugár átjárja a növényt (transzmisszió), az izotópopok sugárzása a szövet belsejéből lép ki (emisszió), az ultrahang visszaverődik (reflexió), mágnesrezonanciás vizsgálat során pedig a növényben fellépő térerőváltozás kelt elektromos áramot (indukció) (Fráter, 2011). Ugyan a képalkotó eljárások az alapkutatáshoz tartozó témát ölelné fel, felhasználásukra a növénynemesítésben és a növényvédelemben is számos lehetőség kínálkozik. A mezőgazdaságban a hiperspektrális képalkotás drónokra elhelyezett kamerákkal történik. A módszerrel összegyűjtött nagy mennyiségű adat a felvételezett növényállományról sok hasznos információval szolgál. Az infravörös képalkotás tulajdonképpen hőfényképezés, amikor a növény által kibocsátott infravörös fény detektálása zajlik (Kozma-Bognár, 2008; URL12). További fontos képalkotási eljárásokhoz tartozik a klorofill-fluoreszcencia képalkotás, a radar elvén működő távolságmérést lehetővé tevő 3D lézerszkennelés, mely a növény morfológiai modelljének előállítására alkalmas, valamint a röntgensugár-tomográfia (mCT képalkotás), az NMR képalkotás és a pozitron emissziós tomográfia (PET) is, mely
tápanyagtranszporttal kapcsolatos vizsgálatokban használható (Hellebrand et al., 2005).
A képalakotásra sor kerülhet klímakamrában, üvegházi, illetve szabadföldi rendszerekben is. A növénygenomika aktuális kihívása az olcsó, illetve széles körben alkalmazható módszerek kidolgozása, melyek nagymértékben függnek a vezeték nélküli hálózat által szolgáltatott információktól (URL12).
A fák nedvmegtartó képességének és a nedváramlási keresztmetszetnek a meghatározására komputer tomográfiát (CT) alkalmaznak. A víz fatörzsön belüli pontosabb lokalizációját és pontos mennyiségi meghatározását a nagyfelbontású orvosi komputer tomográfok teszik lehetővé. A vízszállítási kérdések jobb megértéséhez, különösen sejtszinten, régóta alkalmaznak mágneses rezonancián alapuló módszereket a biológiában (Béres, 2013).
A kísérleteinkben is alkalmazott CT (computer tomography) is röntgensugárzáson alapuló módszer. Ebben az esetben több felvétel készül, majd a metszeteket számítógépes technikával összeilleszik, így a vizsgált terület három dimenzióban is ábrázolhatóvá válik, azaz jobban megítélhetők az esetleges elváltozások. A CT-vel végzett vizsgálatokban gyakran használnak kontrasztanyagokat, hogy az egyes szervek és szövetek még jobban elkülöníthetők legyenek a képeken. Egészen más elven működik az MR (mágneses rezonancia). Itt nincs sugárzás: mágneses mezőt hoznak létre, amelyben a berendezés a szervezet folyadéktéréinek változásait érzékelő. A lágy szövetekről az MR vizsgálat nyújtja a leg pontosabb információt, azokat a részeket is meg tudja jeleníteni, amelyekre a röntgenen a csontok árnyékot vetnek (Zhou et al., 2014; Schwenzer és Pfannenberg, 2015; Perros, 2016, URL1).
4. A DISSZERTÁCIÓ CÉLKITŰZÉSEI

1. Laboratóriumi körülmények között célunk volt megvizsgálni a fésűslábú viráglégy (D. platura) által károsított szója növények hüvelyében bekövetkező beltartalmi értékváltozásokat.

2. Kíváncsiak voltunk, hogy a vándorpoloska (N. viridula) táplálkozása következtében történik-e változás egyes beltartalmi összetevők, konkrétan a szacharidok tekintetében.

3. Célunk volt megvizsgálni a közönséges takácsatka (T. urticae) szójában okozott beltartalmi változásainak, így a nyersfehérje-, nyerszsír-, nyersrost-, valamint a nyershamutartalom változásának mértékét.

4. CT-diagnosztikai módszerrel célunk volt meghatározni a babzsizsik (A. obtectus) által károsított babban jelentkező sűrűség- és térfogatváltozás mértékét összevetésben az ép babbal.

5. Végül a babzsizsik által károsított tételek halakkal történő etetési vizsgálatával kívántunk rávilágítani a károsítás hatására bekövetkező esetleges takarmányhasznosulási eltérésekre. Kísérletünk célja a babzsizsik által károsított bab alkalmazási lehetőségének vizsgálata volt.
5. ANYAG ÉS MÓDSZER

5.1. A kártevők okozta táplálóérték változás vizsgálata

5.1.1. A fésűslábú viráglégy [D. platura (L.)] szóján okozott értékváltozásának elemzése

A kifejlett imágók barnás-szürke legyek, amelyek a házi legyekhez hasonlíthatanak, három hátsó csíkkal. Ezek kb 0,48-0,64 cm hosszú (Gesell, 2000). A szárnyakat nyugalomban áthúzzák a has fölött.
A teljes aminosav-tartalom esetében egy ép, illetve egy károsított mintát vizsgáltunk, három ismétlésben.
A Pécsi Tudományegyetem laboratóriumában a károsított, illetve az ép tételek bevonásával cukorösszetétel vizsgálatokat is végeztünk. A vizsgálat időtartama 7 nap volt. A 2 gramm növényi minta vízoldékony szénhidrátartalmának kivonásához elegendő három egymást követő vizes extrachálás (visszafolyós rendszeren), a végső egységes 20 ml-es tégfogatra beállítva az elegy higítás nélkül használható a kémiai meghatározásokhoz. Boehringer Glu/fru/suc UV test adaptálásával, gyári leírásnál sokkal magasabb mintaszámot lehet meghatározni.
Glükóz meghatározás: 100µl minta+ 330 µl Boehringer puffer +5 µl hexokináz enzim, abszorbancia mérés 340nm-en.
Fruktóz meghatározás: az előző elegy + 5 µl foszfofrukto izomeráz enzim, abszorbancia 340 nm-en.
Szacharóz meghatározás: 100 µl minta + 20 µl invertáz enzim + 5 µl hexokináz enzim, abszorbancia 340 nm-en.
Az abszorbancia adatokból a moláris extinkciós koefficiensek értékeinek ismeretében kiszámolhatóak a koncentrációk. A mintagyűjtés és extrachálás adaptálásával, a minták mérendő szénhidrátartalma a valóságnak megfelelő.
A kémiai protokoll módosításával pedig rengeteg vegyszer és pénz takarítható meg.
értékeltek (P≤0,05). A cukorosszetétel eredményeinek statisztikai értékeléséhez Microsoft Excel program segítségével kétmintás t-próbát használtunk (P≤0,05).

5.1.2. A vándorpoloska [Nezara viridula (L.)] szóján okozott beltartalmi változásainak elemzése

Az elemzés kevés voltát igazolja, hogy az egyes esetekben megfigyelhető kártételek mértékének erős szórásából következően nem volt előre kiszámolható egy erős káresemény bekövetkezte. Így a vizsgálat tervezett ütemezéséből adódóan relatív alacsony kártétel mértékű területről történt a mintagyűjtés.
A Pécsi Tudományegyetem laboratóriumában a károsított, illetve az ép tételek bevonásával cukorösszetétel vizsgálatokat végeztünk. A vizsgálat időtartama 7 nap volt. A 2 gramm növényi minta vízoldékony szénhidráttartalmának kivonásához elegendő három egymást követő vizes exrachálás (visszafolyós rendszeren), a végső egységes 20 ml-es téréfogatra beállítva az elegy higítás nélkül használható a kémiai meghatározásokhoz.

A cukortartalom meghatározása ua, mint a fésűslábú viráglégy esetében. A cukorösszetétel eredményeinek statisztikai értékeléséhez páros t-próbát használtunk R programcsomag felhasználásával (P≤0,05).

5.1.3. A közönséges takácsatka (\textit{Tetranychus urticae} Koch) szóján okozott értékváltozásának elemzése

A károsított és ép szójamintáka a Kaposvári Egyetem Takarmánytermesztési Kutató Intézet bicsérdi szántóterületéről (GPS koordináták: N 46°04’08.68”,
fehérjeösszetétel vizsgálatoknak vetettük alá. A fehérje izolálás és SDS poliakrilamid gélelektroforézis (PAGE) a következőképp történt: a minták fehérje izolálását a Wang et al. (2006) által kidolgozott protokoll alapján végeztük. Porítás után a mintákat folyékony nitrogénben eldörgöltük, majd 2 ml-es Eppendorf csövekbe mérve 10% TCA/aceton-t adtunk hozzájuk, és 30 másodperci erőteljesen rázattuk, 3 perc után 16.000 g, hűtött (4°C) centrifugálást követően a felülűszót leöntöttük. A csapadékot 80% metanol (Szkarabeusz) és 0,1 M ammónium-acetát (Spektrum-3D) elegyével mostuk. Újabb centrifugálást követően (16.000 g, 4°C) a pelletet acetonnal (Pancreac) mostuk, majd 50 °C-on 10 percig száritottuk. Ezt követően kiindulási sejtömegetől függően 0,4-0,8 ml, 1:1 arányú fenol (pH 8,0; Sigma)/SDS-pufferrel extraháltuk a fehérjét. A fenolos fázis proteintartalmát 0,1 M ammónium-acetát-tartalmú metanollal csaptuk ki egy éjszakán át. Másnap 5 perc centrifugálást (16.000 g, 4°C) követően a fehérje fehér pellet formájában maradt vissza, melyet metanollal és 80%-os acetonnal mostunk. A mintákat -80°C-on felhasználásig tároltuk, majd minta pufferben oldottuk fel. A fehérje koncentrációt Nanodrop 2000 UV-Vis stpekfotofotométer segítségével UV 280 nm-en mértük.

A gélelektroforézist a Biorad Miniprotean Tetra Cell készülék használataival végeztük. A minták felvitelét megelőzően 10 perces 150 V-os előfuttatást alkalmaztunk, míg a mintákat 120 V-on futtattuk. A gélek festését 1,5 óra hosszan, Coomassie Brilliand Blue festék oldattal (0,1 v/v% Coomassie Brilliand Blue R-250; 40 v/v% metanol; 10 v/v% jégecet) végeztük. A differenciáló oldatot (10 v/v% ecetsav; 10 v/v% metanol) többször cseréltek. A gélképek dokumentációjához a FluorChemQ – Protein Simple készüléket használtuk.
A weendi analízis eredményeinek statisztikai értékeléséhez egytényezős varianciáláizist végeztünk (P≤0,05) az R programcsomag felhasználásával. A kapott eredményeket Tukey-teszt segítségével értékeltük.

5.2. A babon okozott kártétel CT-diagnosztikai és tápanyaghasznosulási vizsgálatai

5.2.1. A babzsizsik (Acanthoscelides obtectus Say) kártételének elemzése CT-diagnosztikai módszerekkel

A magonkénti átlagos lárvaszám ($\bar{x} \pm SE$) és a babzsizsik lárvák babtételen kialakított tömegvesztésének meghatározására 30 db véletlenszerűen kiválasztott babot vizsgáltunk. E kalkuláció alapjául Jermy (1952) tanulmánya szolgált, mely szerint a kifejlődött babzsizsik imágók rendszerint külön kirepülő nyílást rágva hagyják el a károsított magot, illetve lárvakori posztembrionális fejlődésük során átlagos testtömegük (5,3-5,7 mg) 4,78-szorosának megfelelő tömegű növényi szövetet élnek fel. A vizsgálatunkban a térfogatvesztést néztük, a mag külső palástja alapján a befoglaló térfogatot határoztuk meg. Majd ezen a térfogaton belül elkülönítettük a bab és a levegő térfogatokat. A számolást ebből végeztük el. Először megállapítottuk, hogy csökkent a károsított babok átlagos radiodenzitása az egészségesekhez képest. Itt láttuk, hogy a babok belül a két sziklevél között levegőek. Mivel a babok azonos populációból származtak, a babok bab anyagának térfogatait hasonlítottuk össze egymással és néztük a térfogat különbségeket.

CT-vel végzett képalkotó vizsgálat

4. ábra. Babzsizsik és az általa károsított, vizsgálatba vont bab (fotó: Bosnyákné Egri Helga)
A babszemek komputertomográfias (CT) vizsgálatát a Kaposvári Egyetem, Agrár- és Környezettudományi Karának, Diagnosztikai és Onkoradiológiai Intézetében egy Siemens Somatom Definition Flash (Siemens Gmbh., Erlangen, Németország) típusú szkennerrel végeztük el. A vizsgálatba véletlenszerűen kiválasztott 54 egészséges és 54 károsított babot vontunk be. A két csoportot 3×3×6-os elrendezésben helyeztük a vizsgáló asztalra (5., 6. ábra), és a következő beállításokkal végeztük el a felvételezést: csőfeszültség: 100 kV, dózis: 300 mAs, menetemelkedés: 0,6, szeletvastagság: 0,6 mm, látómező: 55 mm. A spirál üzemmódban gyűjtött nyers adatokból 0,1 mm-enként készítettük el a teljes vizsgálati hosszon a keresztmetszeti képeinket, hasi ablakot és közepesen lágy kernelt használva (B30s). A képek DICOM (Digital Imaging and Communications in Medicine) formátumban kerültek archiválásra.
5. ábra. A károsított bábtelek CT-elemzés érdekében történő 3 soros elrendezéséről 3D Slicer program segítségével készített felvételek

6. ábra: A kísérletben részt vevő, felragasztott babminták
Magyarázat: H: Kevert; P: Károsított; K: Kontrol (Fotó: Bosnyákné Egri Helga)
Az átfedő keresztmetszeti képek ből a McConnell Brain Imaging Centre (MINC) által fejlesztett eszközökkel, „mnc” kiterjesztésű metafájlokat készítettünk, melyek 0,1 mm-es izotrópikus felbontással rendelkeztek. A metafájlok ból a babszemek egyedi képeinek kinyeréséhez az OpenIP (Kovács et al., 2010) szoftvert használtuk. Küszöböléssel (-300HU) számítottuk ki a babszemek térfogatát és átlagos radiodenzitását. Háromdimenziós modellt készítettünk a fenti értékelésből származó küszöbértékekkel, mellyel a károsítás során keletkezett lyukak és lárvajáratok alakját, méretét vizualizálni tudtuk (Fedorov et al., 2012). A háromdimenziós rekonstruksziós munkát a 3D Slicer 47.0 program segítségével valósítottuk meg.

A beltartalmi elemzésből származó eredményeket (n≤50), illetve a mag szövetsűrűségének (HU) illetve a magon belül rágott üreg térfogatának (mm³) mért adatorsorait (n>50) Shapiro–Wilk és Kolmogorov–Smirnov tesztnek vetettük alá (Ghasemi és Zahediasl, 2012). A kapott térfogat és sűrűség adatokat egytényezős varianciaanalízis segítségével SPSS for Windows 11.5. programcsomag felhasználásával elemeztük, és Tukey teszt (HSD) (P<0,05) segítségével értékeltük.

5.2.2 A babzsizsik (Acanthoscelides obtectus Say) által károsított tételek pontyval történő etetési kísérlete

5. táblázat Az ép és károsított babok táplálóanyag-tartalmi értékei

<table>
<thead>
<tr>
<th></th>
<th>Ép bab (átlag)</th>
<th>Károsított bab (átlag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyersfehérje (%)</td>
<td>27,03</td>
<td>31,13</td>
</tr>
<tr>
<td>Nyerszsír (%)</td>
<td>1,2</td>
<td>1,23</td>
</tr>
<tr>
<td>Nyersrost (%)</td>
<td>4,63</td>
<td>5,23</td>
</tr>
<tr>
<td>Nyershamu (%)</td>
<td>3,7</td>
<td>4,43</td>
</tr>
</tbody>
</table>

Második lépésben a kísérleti tápok összeállítása történt, a felhasznált összetevőket a 6. táblázat tartalmazza. A kísérleti tápok fehérje- és zsírtartalma úgy lett kialakítva, hogy a kontrollként használt kereskedelmi haltáppal is azonos legyen (7. táblázat).

6. táblázat A kísérleti takarmányok összetétele (%)

<table>
<thead>
<tr>
<th>Összetevők (%)</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Károsított bab</td>
<td>77,5</td>
<td>0,0</td>
</tr>
<tr>
<td>Ép bab</td>
<td>0,0</td>
<td>73,5</td>
</tr>
<tr>
<td>Kukorica keményítő</td>
<td>12,6</td>
<td>10,3</td>
</tr>
<tr>
<td>Halliszt</td>
<td>5,0</td>
<td>12,0</td>
</tr>
<tr>
<td>Napraforgó olaj</td>
<td>3,4</td>
<td>2,7</td>
</tr>
<tr>
<td>Premix</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Összesen</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

7. táblázat A kísérleti és kontrol takarmányok fehérje- és zsírtartalma

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyerszsír (%)</td>
<td>4,68</td>
<td>4,42</td>
<td>4,5</td>
</tr>
<tr>
<td>Nyersfehérje (%)</td>
<td>27,03</td>
<td>27,05</td>
<td>27</td>
</tr>
</tbody>
</table>

A takarmányozási kísérlet a Kaposvári Egyetem Aquakultúra és Halgazdálkodási Intézeti Tanszékének Hallaboratóriumában került beállításra. A kísérleti állományt egynyaras pontyok (67,9 ± 11,2 g) alkották. A kontrol és a két kísérleti tápot fogyasztó csoportba tartózó halakat egyedileg levegőztetett, 300 literes, recirkulációs rendszerben üzemelő kádakban helyeztük el háromszoros ismétlésben (N=3x3x20=180).

A takarmányozás *ad libitum* történt napi két alkalommal. A halak súlyát a kísérlet folyamán hetente, hosszát pedig a kísérlet befejezével mértük. Az adatokból kondíciófaktort számoltunk az alábbiak szerint $\text{CF} = \frac{W}{L^3} \times 100$, ahol W – élősúly (g); L – standard hossz (cm).
A kísérlet tápok látszólagos emészthetőségének tervezett meghatározása nem sikerült, mivel ezekből a halak olyan keveset fogyasztottak, ami lehetetlenné tette az analízishez szükséges mennyiségű ürülék összegyűjtését.

Statisztikai elemzés:

Kezdetben a primer mérési adatállományból a kétszeres szórástávolságon kívüli értékek kerültek kizárásra, majd a fennmaradó adatokon normalitásvizsgálatot végeztünk (Shapiro–Wilk teszt). A különböző takarmányok növekedésére gyakorolt hatásának kimutatására egytényezős varianciaanalízist alkalmaztunk, majd a kezelésátlagok összehasonlítását Tukey teszttel végeztük. Az ép és károsított babtételek aminosav-összetételének összefüggésvizsgálata Spearman-féle korrelációanalízissel történt.

6. EREDMÉNYEK ÉS ÉRTÉKELÉSÜK

6.1. A különböző ízeltlábú kártevők szója beltartalmi változására gyakorolt hatásai

6.1.1. Fésűslábú viráglégyel kapcsolatos vizsgálatok

A nedvességtartalomban és a beltartalmi értékekben bekövetkezett változásokat a 8. táblázat szemlélteti. A légy által károsított szójababok jól érzékelhetően kényszerérettek voltak, mely jelenséget a statisztikai vizsgálatok is alátámasztották (P=0,003). A nyersfehérje-tartalomban megmutatkozó eltérés viszont nem volt statisztikailag igazolható (P=0,455). A károsított tételekben átlagosan 0,6%-kal kevesebb nyersfehérje-értéket mértünk. A nyerszsírtartalom a károsított tételekben szignifikáns eltérést mutatott az ép tételekhez képest (P=0,006). A továbbiakban a nyersrost- (P=0,001) és nyershamu- (P=0,029) értékek szignifikáns eltérését is kimutatta a statisztikai elemzés.

8. táblázat A fésűslábú viráglégy (Delia platura) által károsított és egészséges szójatételek weenedi vizsgálatának eredményei

<table>
<thead>
<tr>
<th></th>
<th>Nedvesség-tartalom (%)</th>
<th>Nyersfehérje-tartalom (%)</th>
<th>Nyerszsírtartalom (%)</th>
<th>Nyersrost-tartalom (%)</th>
<th>Nyershamu-tartalom (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Károsított</td>
<td>11,70</td>
<td>35,35</td>
<td>18,65</td>
<td>4,15</td>
<td>4,45</td>
</tr>
<tr>
<td>Kontrol</td>
<td>14,00</td>
<td>35,95</td>
<td>20,00</td>
<td>5,75</td>
<td>4,85</td>
</tr>
<tr>
<td>Különbségek</td>
<td>2,30</td>
<td>0,60</td>
<td>1,35</td>
<td>1,60</td>
<td>0,40</td>
</tr>
<tr>
<td>P</td>
<td>0,003</td>
<td>0,455</td>
<td>0,006</td>
<td>0,001</td>
<td>0,029</td>
</tr>
</tbody>
</table>

A cukorvizsgálat során kimutatást nyert, hogy a károsított növények szacharóztartalma már a negyedik nap után nagyobb értéket mutat, mint az egészséges szójábáb mintá ké (7. ábra).
Az egészséges és a fésüslábú viráglégy által károsított minták szacharóztartalmának változása a vizsgált szójabab tételekben

A fruktóz- és a glükóztartalom a hatodik vizsgálati napot követően eltérést mutatott a károsított mintákban (8., 9. ábra).
Az egészséges és a fésüslábú viráglégy által károsított minták glükóztartalmának változása a vizsgált szójabab tételekben

A fruktóztartalom a vizsgálat 6. napján az ép és a károsított tételekben hasonló tendenciát mutatott. A fruktóz a vizsgálat első napjaiban a károsított magokban alacsonyabb, a 6. nap után magasabb értéket képviselt. Statisztikailag igazolható eltérést sem a fruktóz (P=0,165), sem a glükóz (P=0,282) esetében nem sikerült kimutatnunk. A szacharóztartalom (P=0,359) a harmadik nap után csökkent az ép, illetve a légy által károsított szójában is. A 7–9. ábrák mutatják, hogy nincs szignifikáns eltérés az ép, valamint a fésüslábú viráglégy által károsított minták cukorösszetételének alakulásában.

A fruktóztartalom a vizsgálat 6. napján az ép és a károsított tételekben hasonló tendenciát mutatott. A fruktóz a vizsgálat első napjaiban a károsított magokban alacsonyabb, a 6. nap után magasabb értéket képviselt. Statisztikailag igazolható eltérést sem a fruktóz (P=0,165), sem a glükóz (P=0,282) esetében nem sikerült kimutatnunk. A szacharóztartalom (P=0,359) a harmadik nap után csökkent az ép, illetve a légy által károsított szójában is. A 7–9. ábrák mutatják, hogy nincs szignifikáns eltérés az ép, valamint a fésüslábú viráglégy által károsított minták cukorösszetételének alakulásában.

A 9. táblázat a fésüslábú viráglégy által károsított, illetve az ép szójababok fehérjeösszetételét mutatja be. Az adatok eltérést (3-6 %) mutatnak az aminosavak többségénél. A károsított tételekben nagyobb arányban szerepeltek pl. a glicin, az alanin, a valin, az izoleucin, a leucin aminosavak. Ezzel szemben a cisztein ugyanannyi, míg az arginin és a metionin aminosavak az ép tételekben szerepeltek nagyobb arányban. A cisztein és a metionin a két
kéntartalmú aminosav, melyeknek fontos szerepük van a fehérjék felépítésében. Meglepő, hogy két aminosav csökkent csak a károsított mintában az ép tételhez viszonyítva (metionin, arginin). A metionin esetében tapasztaltuk negatív irányban a legnagyobb változást (-2,13%) az ép tételhez képest. A cisztein esetén nem tapasztaltunk eltérést az ép, illetve a károsított tétel között. Pozitív irányban a legnagyobb eltérést a triozin aminosav esetében mértünk (7,76%) a károsított mintában az éphez képest. Átlagosan az aminosavak tekintetében az eltérés 3,68%-os arányban volt tapasztalható. Ez befolyásolhatja a növény élettani folyamatait, például a fehérjeszintézist (Solano et al., 2013).

A fésűslábú viráglégy (D. platura) károsítás következménye, hogy a kényszerérés hatására a szója kevesebb hektáronkénti hozamot fog adni, illetve a bizonyított beltartalmi értékromlások pedig előreláthatólag a takarmányszója értékvesztését fogják generálni (Funderburk és Pedigo, 1983).

A globális klímaváltozásnak köszönhetően az adventív károsítók egyre agresszíverebb nyomása érzékelhető a világ számos agrárterületén (Rosenzweig et al., 2001; Lourenção et al., 2004; Casteel, 2010; Rosenzweig et al., 2014), mely alól Magyarország szójatermesztése sem képez kivételt.

A megemelkedett CO2-koncentráció és a globális hőmérséklet-növekedés alapvetően változtatja, változtatta meg a legkülönbözőbb élőlények élettani folyamatait, ökológiai jellemzőit (Bidart és Imeh-Nathaniel, 2008). A megváltozott körülményekhez igazodva természetesen változnak a növények is, amely a továbbiakban kihat ízeltlábú kártevőik kártételi sajátságaira (Casteel, 2010).
9. táblázat A fésűslábú virgálégy által károsított, illetve az ép szója mintákban előforduló aminosavak aránya (g AS/100 g minta)

<table>
<thead>
<tr>
<th>Aminosavak</th>
<th>Ép minta</th>
<th>Károsított minta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aszparaginsav</td>
<td>4,02</td>
<td>4,25</td>
</tr>
<tr>
<td>Treonin</td>
<td>1,3</td>
<td>1,36</td>
</tr>
<tr>
<td>Szerin</td>
<td>1,72</td>
<td>1,79</td>
</tr>
<tr>
<td>Glutaminsav</td>
<td>6,61</td>
<td>6,76</td>
</tr>
<tr>
<td>Prolin</td>
<td>1,75</td>
<td>1,79</td>
</tr>
<tr>
<td>Glicin</td>
<td>1,47</td>
<td>1,55</td>
</tr>
<tr>
<td>Alanin</td>
<td>1,44</td>
<td>1,53</td>
</tr>
<tr>
<td>Cisztein</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Valin</td>
<td>1,67</td>
<td>1,72</td>
</tr>
<tr>
<td>Metionin</td>
<td>0,47</td>
<td>0,46</td>
</tr>
<tr>
<td>Izoalacsin</td>
<td>1,58</td>
<td>1,66</td>
</tr>
<tr>
<td>Leucin</td>
<td>2,66</td>
<td>2,76</td>
</tr>
<tr>
<td>Triozin</td>
<td>1,16</td>
<td>1,25</td>
</tr>
<tr>
<td>Fenilalanin</td>
<td>1,75</td>
<td>1,83</td>
</tr>
<tr>
<td>Hisztidin</td>
<td>0,98</td>
<td>1,04</td>
</tr>
<tr>
<td>Lizin</td>
<td>2,2</td>
<td>2,3</td>
</tr>
<tr>
<td>Arginin</td>
<td>2,68</td>
<td>2,66</td>
</tr>
</tbody>
</table>
6.1.2. Vándorpoloskával kapcsolatos vizsgálatok

A cukorösszetétel vizsgálatok során kimutatást nyert, hogy a vándorpoloska által károsított növények szacharóztartalma már az első vizsgálat alkalmával kevesebb, mint az egészséges szójabab minták (10. ábra). Az eltérés szignifikánsnak bizonyult (P=0,043).

![Diagram 10: Vándorpoloska károsításának hatása a vizsgálatba volt szójabab tételek szacharóz mobilitására](image)

10. ábra A vándorpoloska károsításának hatása a vizsgálatba volt szójabab tételek szacharóz mobilitására

A monoszacharidok közé tartozó fruktóz esetében markáns különbség nem volt tapasztalható a poloskák által károsított, illetve az egészséges tételek között (11. ábra).
Szignifikáns eltérést a glükóz (12. ábra), illetve a szacharóz esetében tapasztaltunk (P=3,179e-08, P=0,043).

A glükóz az ötödik vizsgálati napig lényegében stagnált, majd növekedett az ép, illetve a poloska által károsított szójában egyaránt. A 12. ábrán látható a szignifikáns eltérés a glükóz esetében (P=3,179e-08). A 11. ábrán a fruktóz esetében tapasztaltunk csak kisebb eltérést az ép szójatételekhez viszonyítva, ahol statisztikai különbség nem volt igazolható (P=0,467).
Eredményeink alapján a glükóz- és a szacharóztartalom szignifikánsan eltért az egészséges tételek hasonló paramétereitől. A poloska az általa elfogyasztani kívánt terménybe injektált nyála megkezdi az előemésztést, és az így folyékonnyá váló anyagot szívja fel később az állat. A nyálában különböző emésztőenzimek találhatóak. A terményben végbemenő változások a poloska által a termésbe injektált emésztőenzimeinek hatásával magyarázható (Thomas et al., 1974; Rosell et al., 2002a; Rosell et al., 2002b). A cukorösszetétel vizsgálat eredményei rámutattak a vándorpoloska (N. viridula) okozta beltartalmi értékvesztés tényére. E kárfolyamatnak számos kevezőtlen növényélettani következménye lehet, hiszen a szénhidrát-anyagcsere központi élettani jelentőségű, mivel a fehérjék, lipidék, nukleotidok szintézise és lebontása is számos metaboliton keresztül kapcsolódik hozzá. Így a cukorösszetétel megváltozása szorosan kihat szinte valamennyi molekuláris és ezen keresztül számos élettani folyamatra, mely végső soron a növény méretében, összetételében, ellenálló képességében

![Graph showing glucose concentration changes over time](image-url)

6.1.3. A közönséges takácsatkával kapcsolatos vizsgálatok

A szójaminták bel tartalmi analízisének eredményei a nyersfehérje tekintetében mutattak eltérést a takácsatkával károsított, valamint az ép szójabab minták között. (13. ábra). A nyersfehérje-tartalom a károsítás hatására kis mértékben változott meg (P=0,049). Az atka által károsított minták nyersfehérje tartalma magasabb értéket mutatott a vizsgálat alkalmával, mint az ép tételek. A nyerszsír- (P=0,643) és nyersrosttartalom (P=0,069) a károsítás hatására történő megváltozását viszont a statisztikai vizsgálatok nem erősítették meg. Az atka károsításának hatására a nyershamu tartalomban bekövetkezett változások szintén nem mutattak szignifikáns eltérést (P=0,859). A szója beltartalmában nem következett be számottevő változás az atka károsítás hatására. Mint, ahogy a korábbi fejezetben hivatkozott Hildebrand és mtsai (1986b) is leírták a növekvő atkák fertőzöttségé szintje az összes oldható cukor és keményítő enyhe növekedését, valamint a szója leveleinek összes nitrogén- és foszforszintjének csekély csökkenését okozza. Az atkafertőzésnek nincs hatása a magok összetételére. A növekvő atka-károsodás jelentősen
csökkentette a levélklorofill-tartalmat (55,26%) és a levélkarotinoid tartalmának még drasztikusabb veszteségét (79,3%) okozta.

13. ábra A közönséges takácsatka által okozott nyersfehérje, nyerszsír, nyersrost és nyershamu változásának %-os eltérései az ép mintákhoz viszonyítva
A módszerrel a károsított mintában a 48 kDa tömegű fehérjék megjelenését bizonyítottuk, mindamellett pedig a közönséges takácsatka károsító tevékenységének hatására markánsabban megjelentek a 30 kDa alatti molekulatömegű fehérjék is a mintában. A 69 kDa fehérjék a károsított mintában kisebb arányban találhatóak meg, mint az ép tételekben.

A szójaminták fehérjeösszetétel és -tartalom változását igazoló vizsgálati eredményeinket korábbi, más fajokkal végzett kutatások eredményei is alátámasztják (Godfrey et al., 1987; Moawad 2014; Amin et al., 2016; Zhang et al., 2016).

Az atkák szívogatásuk hatására a növény fotószintetizáló felülete kárt szenved (De Freitas Bueno et al., 2009). A riboszómális fehérjék sérülése nagymértékben érintett élettani következménye a fehérje struktúra megváltozásnak (Goldberg, 2003).

A gélelektroforézis vizsgálat pedig jól tükrözte a fehérjék károsítás hatására bekövetkező mennyiségi átrendeződését (Sivri et al., 1998; Aja et al., 2004).
6.2. A babzsizsik babon okozott kártételének analitikai és takarmányhasznosulási vizsgálatai

6.2.1. A babzsizsik kártételének elemzése CT-vel végzett képalkotó technika segítségével

A babzsizsik által babon kiváltott beltartalmi átrendeződés tényét a weendei analízis egyértelműen igazolta (10. táblázat). Érdekes, hogy a vizsgált paraméterek esetében a károsított tételek magasabb értékeket mutatnak, mint az ép minták vonatkozó beltartalmi értékei. Ez különösen a károsított tételek nyersfehérje adatainál szembetűnő. A Shapiro–Wilk teszt igazolta a vizsgálatba vont adatok normális eloszlását. A varianciaanalízis eredménye szerint a károsított tételek nyersfehérje- (P=0,042), nyerszsír- (P=0,038) és nyersrost- (P=0,002) tartalma szignifikánsan eltér az ép tételek hasonló értékeitől, viszont a nyershamu vonatkozásában ez nem volt kimutatható (P=0,519).

10. táblázat. A vizsgálatba vont ép és babzsizsik által károsított babtételek (n=4) weendi analízisének eredménye

<table>
<thead>
<tr>
<th></th>
<th>Átlag (x)</th>
<th>Szórás (s)</th>
<th>Standar d hiba (SE)</th>
<th>95% konfidencia interv. alsó érték</th>
<th>felső érték</th>
<th>Szórás (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyersfehérje</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egészséges</td>
<td>27,033</td>
<td>0,152</td>
<td>0,088</td>
<td>26,654</td>
<td>27,413</td>
<td>0,042</td>
</tr>
<tr>
<td>károsított</td>
<td>31,133</td>
<td>0,057</td>
<td>0,033</td>
<td>30,99</td>
<td>31,277</td>
<td></td>
</tr>
<tr>
<td>Nyerszsír</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egészséges</td>
<td>1,045</td>
<td>0,041</td>
<td>0,024</td>
<td>0,952</td>
<td>1,138</td>
<td>0,038</td>
</tr>
<tr>
<td>károsított</td>
<td>1,233</td>
<td>0,046</td>
<td>0,033</td>
<td>1,09</td>
<td>1,377</td>
<td></td>
</tr>
<tr>
<td>Nyersrost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egészséges</td>
<td>4,633</td>
<td>0,208</td>
<td>0,12</td>
<td>4,116</td>
<td>5,15</td>
<td>0,002</td>
</tr>
<tr>
<td>károsított</td>
<td>5,233</td>
<td>0,251</td>
<td>0,145</td>
<td>4,608</td>
<td>5,858</td>
<td></td>
</tr>
<tr>
<td>Nyershamu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egészséges</td>
<td>4,312</td>
<td>0,113</td>
<td>0,062</td>
<td>4,254</td>
<td>4,37</td>
<td>0,519</td>
</tr>
<tr>
<td>károsított</td>
<td>4,433</td>
<td>0,033</td>
<td>0,052</td>
<td>4,29</td>
<td>4,577</td>
<td></td>
</tr>
</tbody>
</table>
A magonként kalkulált átlagos lárvaszám 8.93±1.83 volt. Az ebből számolt lárvatáplálkozás miatt bekövetkező átlagos szervesanyag-veszteség mintegy 234.76±8.54 mg/mag érték ért el, mely a mag egészsének tetemes, konkrétan 49.42% tömegvesztését jelenti.

A 11. táblázatban láthatóak a babzsizsik által károsított, illetve az ép tételek CT-diagnosztikai eljárásból származó sűrűség (denzitás) értékei. Az adatokból kiderül, hogy a károsított tételek alacsonyabb radiodenzitású (HU) értékekkel bírnak, mint az ép tételek. Az átlagos eltérés e tételek denzitás értékeit között 75.834 HU (41.98%). Tehát a lárvák az érintett bab magok sűrűbb alkotórészeit rágták ki.

11. táblázat. Az egészséges és babzsizsik által károsított babtételek CT segítségével megállapított sűrűség és térfogat elemzésének statisztikai adatai (n=54); HU = Hounsfield Unit

<table>
<thead>
<tr>
<th></th>
<th>Átlag (x)</th>
<th>Szórás (s)</th>
<th>Standar d hiba (SE)</th>
<th>95% konfidencia interv.</th>
<th>Szórás (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>alsó érték</td>
<td>felső érték</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Térfogat (mm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egészséges</td>
<td>1129,857</td>
<td>243,859</td>
<td>33,185</td>
<td>1063,29/1196,418</td>
<td>0,000</td>
</tr>
<tr>
<td>károsított</td>
<td>833,695</td>
<td>253,573</td>
<td>34,507</td>
<td>764,483/902,907</td>
<td></td>
</tr>
<tr>
<td>Sűrűség (HU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egészséges</td>
<td>180,63</td>
<td>28,048</td>
<td>3,817</td>
<td>172,974/188,285</td>
<td>0,000</td>
</tr>
<tr>
<td>károsított</td>
<td>104,796</td>
<td>65,885</td>
<td>8,966</td>
<td>86,813/122,779</td>
<td></td>
</tr>
</tbody>
</table>

A térfogat eredményekből kiderül, hogy a károsítás hatására az érintett minták jelentős térfogatvesztést is elszenderdítették. Az ép magok átlagos térfogata 1129.857±33.7185 mm³ volt. Átlagosan 296.162 mm³-rel kevesebb egy károsított mag térfogata az éphez képest. A térfogatvesztés átlagos értéke 26,21%.

A Kolmogorov–Smirnov teszt igazolta a vizsgálatba vont adatok normális eloszlását (P>0.05). A varianciaanalízis megerősítette a károsított terménytételek szignifikáns sűrűség- és térfogatcsökkenését (P= 0.000).

72
A 15. ábrán látható a 3D dimenziós rekonstrukcióval előállított károsított babszemekről készített vizualizált felvétel. Jól látható, hogy a babzsízsik a mag szikanyagát, cotyledon részét rágta meg, anknázta, a perikarpium szinte érintetlen maradt. A vizsgálatba vont minták többségében a tartalék tápanyagot tartalmazó sziklevél – mely a mag centrális zónájában helyezkedik el – teljesen megsemmisült. Így a fejlődő embrióknak szükséges tartalék tápanyagok teljesen hiányoznak a károsított magok esetében.

A zsízsikkel károsított terményben a babminták denzitáscsökkenése és térfogatvesztesége egyértelműen kimutatható volt. A weendi analízis igazolta, hogy a minőségi paraméterek, mint például a zsír-, rost-, fehérjet tartalom is megváltozott. Megtévesztő lehet a károsított minták fehérjetartalmának mennyiségi növekedése, mely a zsízsiktetemek jelenlétére vezethető vissza.

Vizsgálatunk igazolta, hogy a rovarok okozta károk gyakran külsőleg nehezen észlehetőek, és ebben segítségünkre lehetnek a különböző állattani és
humánegészségügyi diagnosztikában használt képalkotási módszerek (Bonants és Witt, 2017).

A bab sűrűbb alkotórészeinek megsemmisülése a kísérletünk igazolása szerint a magas fehérjetartalmú, sűrűbb szikanyagot tartalmazó (sziklevél) magalkotók elfogyasztásával van összefüggésben (Cardona et al., 1983; Quentin et al., 1991).

A babzsizsik (A. obtectus) által károsított babtételek minőségi és mennyiégi értékelésére kiválóan alkalmas az általunk alkalmazott CT segítségével végzett képrekonstrukciós eljárás. A képalkotó diagnosztikai módszerek alkalmazása jelentősen hozzájárul a rejtett életmódot folyók és kártevők élettani, kártevői ismeretanyagának bővítéséhez (Fricker és Oparka, 1999; Lewandowski, 2001; Hellebrand et al., 2005; Vulgarakis et al., 2013; Jambhulkar és Sadawarti, 2013; Li et al., 2014; Kishore et al., 2015).

A CT használata a növényvédelmi képek értékelése során a hatékony kémiai védekezések kivitelezését, így az integrált növényvédelem (IPM) gyakorlati megvalósulását segítik elő (Burth et al., 1995).

6.2.2. Babzsizsik által károsított babtételek pontnyal történő etetési kísérlete

Az egészséges és károsított babtételek fehérjetartalmában a laboratóriumi vizsgálatok különbséget igazoltak a károsított bab javára (12. táblázat). Ez a jelenség szójabab esetében is tapasztalható Alydidae és Pentatomidae kártevők hatására, a fehérjetartalom akár 13%-al is növekedhet (Calhoun et al., 1988; Rosell et al., 2002a; b).

Meglepő módon azonban az aminosav-összetétel tekintetében a Spearman-féle korrelációs koefficiens értéke (r = 0,939, p <0,001) csaknem teljes megfelelést mutatott az általunk használt tételek esetében (13. táblázat).
12. táblázat Az egészséges, valamint károsított bab aminosav tartalom

<table>
<thead>
<tr>
<th>Aminosav</th>
<th>Egészséges bab</th>
<th>Károsított bab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/100 g minta</td>
<td>g/100 g fehérje</td>
</tr>
<tr>
<td>Aszparaginsav</td>
<td>2,57</td>
<td>12,06</td>
</tr>
<tr>
<td>Treonin</td>
<td>1,00</td>
<td>4,69</td>
</tr>
<tr>
<td>Szerin</td>
<td>1,30</td>
<td>6,10</td>
</tr>
<tr>
<td>Glutaminsav</td>
<td>3,59</td>
<td>16,85</td>
</tr>
<tr>
<td>Prolin</td>
<td>0,97</td>
<td>4,55</td>
</tr>
<tr>
<td>Glicin</td>
<td>0,89</td>
<td>4,18</td>
</tr>
<tr>
<td>Alanin</td>
<td>0,92</td>
<td>4,32</td>
</tr>
<tr>
<td>Cisztin</td>
<td>0,29</td>
<td>1,36</td>
</tr>
<tr>
<td>Valin</td>
<td>1,15</td>
<td>5,40</td>
</tr>
<tr>
<td>Metionin</td>
<td>0,28</td>
<td>1,31</td>
</tr>
<tr>
<td>Izoleucin</td>
<td>0,93</td>
<td>4,36</td>
</tr>
<tr>
<td>Tirozin</td>
<td>0,67</td>
<td>3,14</td>
</tr>
<tr>
<td>Fenilalanin</td>
<td>1,22</td>
<td>5,73</td>
</tr>
<tr>
<td>Hisztidin</td>
<td>0,59</td>
<td>2,77</td>
</tr>
<tr>
<td>Lizin</td>
<td>1,54</td>
<td>7,23</td>
</tr>
<tr>
<td>Arginin</td>
<td>1,36</td>
<td>6,38</td>
</tr>
<tr>
<td>Összeg</td>
<td>21,31</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Ábra. A kísérletben szereplő táppal etetett halak növekedése a kísérlet folyamán (P)

A kísérlet végeztével statisztikailag is igazolható különbséget tapasztaltunk az eltérő csoportok egyedeinek átlagsúlyában, hosszában és kondíció-faktorában is. A legjobb eredményt minden tekintetben a kontrol csoport érte el, a legrosszabbat pedig a zsizsik által károsított babot tartalmazó táp (13. táblázat).

13. táblázat Az eltérő táppal etetett halak súlya, hossza és kondíció-faktora a kísérlet végén

<table>
<thead>
<tr>
<th></th>
<th>Ép</th>
<th>Károsított</th>
<th>Kontrol</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>átlag ± szórás</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Élősúly (g)</td>
<td>69,3 ± 11,0a</td>
<td>60,3 ± 10,7b</td>
<td>85,5 ± 14,2c</td>
<td><0,01</td>
</tr>
<tr>
<td>Testhossz (mm)</td>
<td>135,6 ± 8,4a</td>
<td>129,7 ± 7,0b</td>
<td>145,7 ± 8,6c</td>
<td><0,01</td>
</tr>
<tr>
<td>Kondíciófaktor</td>
<td>1,8 ± 0,6a</td>
<td>1,4 ± 0,5b</td>
<td>2,7 ± 0,9b</td>
<td><0,01</td>
</tr>
</tbody>
</table>

Az az eredmény, hogy a halliszt ilyen jelentős mennyiségű helyettesítése babbal rontja a ponty teljesítményét, nem meglepő. A legtöbb halfaj negatív reagál a növényi eredetű fehérjék magas arányára a takarmányban. Pisztráng esetében a halliszt lóbabbal történő helyettesítése során a 15%-os arány eredményezte a legjobb növekedést (a kontrolhoz képest is), a magasabb %-ú
lóbabtartalom már fokozatosan rontotta a teljesítményt (Ouraji et al., 2013). Lóbab fehérje koncentrátum magasabb arányban bekeverve rontotta az atlanti lazac (Salmo salar) növekedését (De Santis, 2016). Szója helyettesítése kardbabbal (Canavalia ensiformis) 11%-os részarány felett szignifikánsan csökkenti az afrikai harcsa (Clarias gariepinus) teljesítményét (Solomon et al., 2017).

Valószínűsíthető, hogy az esszenciális aminosavak (lizin, metionin, cisztin) alacsony szintjének limitáló hatása lehet a jelenség okára, mivel a babban mért értékek elmaradnak a ponty számára előírt értékektől (Magyar Takarmánykódex, 2004), egyben a szójában mérhető mennyiségektől is (Cavins et al., 1972). Lehetséges magyarázat, hogy a kísérleti tápok összeállítása során az azonos fehérjetartalom kialakítása végett a károsított bab magasabb arányban került bekeverésre az éppel szemben. Az ép babot tartalmazó táp ennek következtében több hallisztet tartalmazott, ami nagyobb hányadban képes biztosítani az esszenciális aminosavakat.

Alapvetően a babfélék (bab, lóbab, kardbab, mungóbab), mint növényi eredetű fehérjék 20-30% közötti mennyiségben alkalmazhatók haltápokban ragadozó halak (farkassügér, lazac, szivárványos pisztráng) számára, negatív hatás nélkül (Adamidou, 2008; Ouraji et al., 2013; De Santis et al., 2016). A nílusi tilápia, (Oreochromis niloticus) növényevőként a 20% feletti lóbabtartalmú tápot is kiválóan képes hasznosítani (Azaza et al., 2009). Borsó és csillagfürt már jóval nagyobb részarányban (akár 40%) használható pisztrángtáp összetevőjeként, megfelelő növekedést biztosítva (Farhagi és Carter, 2001; Glencross et al., 2004; Collins et al., 2012). A tóban lejátszódó hidrobiológiai folyamatok minél jobb megismerésével és agrotechnikai beavatkozásokkal a természetes hozamok fokozása továbbra is záloga a sikeres tavi haltermelésnek. Ugyanakkor a termelési célok figyelembevételével a megfelelő takarmányok megválasztása – ami lehet gabona, növényi eredetű fehérjében gazdag melléktérről vagy extrudált keveréktakarmány – döntően
befolyásolja a jövedelmezőképességet. A csökkent értékű melléktermékek felhasználása esetén pedig javasolható az előzetes etetési vizsgálatok elvégzése (Balikó et al., 2007; Varga et al., 2016).

A károsított babot önmagában nem célszerű etetni, keveréktakarmányokba történő lehetséges bevonási mértékének megállapítására további vizsgálatok szükségesek (Varga et al., 2016).
7. KÖVETKEZTETÉSEK, JAVASLATOK

A disszertáció átfogó célja volt egyes ízeltlábú fajok által károsított hüvelyes takarmánynövények minőségi paramétereiben történő, változások tanulmányozása. A vállalt célkitűzések tükrében, a rendelkezésre álló szakirodalmi adatok alapján az alábbi következtetéseket vonhatjuk le.

A fésűslábú viráglégy szóján okozott kártételének következtében kényszerérés állt be. A károsítás hatására változás következett be a nyerszsír, nyersrost, valamint a nyershamu tartalomban is. A fehérje összetétel vizsgálat adatai 3,68 % eltérést mutattak az aminosavak esetében. A kártétel hatására csökkeni fog a szója terméshozama, valamint a mag minőségében is változás tapasztalható.

A vándorpoloska kártétele szóján a glükóz, valamint a szacharóz tartalom megváltozásával is bizonyítható volt. Az ízeltlábú kártevő okozta stressz hatására a növény magjában található cukrok (glükóz, szacharóz) változtak meg. A szénhidrattartalom megváltozása összefügg a vetőmag csírázóképességének alakulásával, a növény betegségekkel szembeni toleranciájával, valamint a fagytűrő-képességével.

A vizsgálati eredmények alapján feltételezhető, hogy a jelen klímaszélsőségek és agrotechnikai hatások jövőbeni egybeesése a fésűslábú viráglégy, valamint a vándorpoloska kártétele nyomán a megtermelt szójatelekről minőségi megváltozása várható. Így kísérleti eredményeinkből arra következtetünk, hogy a kártevők elleni növényvédetlen beavatkozások a szójatermesztésben is indokolt technológiai elemmé válhatnak.

A közönséges takácsatka kártétele a szója magjában a Weendei analízis eredményei alapján számottevő változást nem okoznak. Viszont a fehérjeösszetételben különböző tömegű fehérjék megjelennek, mások meg eltűnnek. Az atka a levél károsításával főként a növény fotoszintetizáló felületét károsítja, valamint ezáltal csökkenti annak nagyságát. A takácsatka
kártétele által a takarmányszója tételek esetében a fehérjetartalomban okozott változás, átrendeződés emésztesi rendellenességeket okozhat a gazdasági állatok ilyen jellegű takarmányozását követően.

A babzsizsik károsítását egyértelműen igazoltuk CT diagnosztikai módszerrel. Mind sűrűség, mind térfogat vesztés következett be a növény magjában. A képalkotó módszerek alkalmazása a növényvédelemben elősegítheti a hatékony kémiai védekezések tervezését és végrehajtását.

A babzsizsik által károsított, valamint az egészséges babot tartalmazó tápot etettük egynaras pontyokkal. A halas etetési kísérlet eredményei arra engednek következtetni, hogy a bab magas arányú halliszthelyettesítőként való alkalmazása jelentősen rontja a ponty teljesítményét. A bab jól alkalmazható fehérjeforrás a haltakarmányozásban, azonban csak meghatározott mennyiségben váltható ki vele a halliszt. Ugyanakkor a melléktermékek felhasználásával készült extrudált tápok nemcsak fenntarthatósági szempontból kedvezőbbek a magas halliszttartalmú tápoknál, hanem általában ár–érték arányban is. Szükségesnek tartjuk tehát a kísérleti munka folytatását, mely során meg kívánjuk határozni azt a babmennyiséget, mely a haltakarmányban felhasználva nem rontja a növekedést és a takarmányértékesítést. Fontos lenne még emellett a látszólagos emészthetőség meghatározása és a babtartalmú táp ponty húsminőségére gyakorolt hatásának vizsgálata is.

A jelenkor legnagyobb növényvédelmi kihívása e megváltozott agrobiológiai körülmények időben történő észlelése és az erre adott hatékony, fenntartható védekezések kivitelezése. E technológiai elemek pozitív hozadéka többek között a teljes értékű, egészséges takarmány biztosítása.
8. ÚJ TUDOMÁNYOS EREDMÉNYEK

1. Laboratóriumi, analitikai módszerekkel elsőként igazoltuk a fésűslábú viráglégy [Delia platura (Meigen)] károsításának hatására a szőjanövényekben bekövetkező kényszerérés jelenségét, valamint az ép magokhoz képest a nyerszsír, nyershamu, illetve nyersrost értékek megváltozását.

2. Igazoltuk a vándorpoloska [Nezara viridula (L.)] kártételének hatására a szójában bekövetkező cukorosszetétel-változásokat. A laboratóriumi vizsgálat rámutatott, hogy az egészséges tételekhez képest a poloska által károsított magok glükóz-, illetve szacharóztartalma jelentősen megváltozott, míg a fruktóztartalom nem változott szignifikáns mértékben az ép tételekhez viszonyítva.

3. Elsőként mutattuk ki a közönséges takácsatka (Tetranychus urticae Koch) által károsított szójatételek fehérjestruktúrájának átrendeződését. Gélelektroforézis (SDS PAGE) segítségével bizonyítottuk a nagy molekulatömegű fehérjék (69 kDa és a feletti) károsított tételekből való csökkenését, míg alacsonyabb molekulatömegű fehérjék (30 kDa és az alatti) megjelenését.

4. Babszemek komputertomográfiai (CT) diagnosztikai vizsgálatával igazoltuk a babzsizsik (Acanthoscelides obtectus Say) által károsított babokon okozott szignifikáns denzitás- és térfogatvesztés tényét, ami akár 26% térfogat és 40% sűrűségveszteséget is jelenthet.

5. Az egnyarasz pontyokkal (Cyprinus carpio L.) végzett, kísérlet eredményei alapján megállapítható, hogy a károsított babot tartalmazó kísérleti
táppal szignifikánsan csökkent a halak növekedési üteme, szemben az ép babot tartalmazó, illetve a kontrol pontytáppal etetett halakéval. Ez elsősorban a csökkent takarmányfelvételre vezethető vissza. A bab – legyen ép vagy károsított – pontytáp összetevőként csak az általunk alkalmazott 74 ill. 78%-osnál jóval kisebb arányban javasolható. Egynyaras pontyok számára készített haltápban az általunk kipróbált arányban a bab nem alkalmazható még akkor sem, ha azt a kereskedelmi forgalomban lévő haltáppokkal azonos nyersfehérje és zsírtartalommal alakítjuk ki. A babzsísk károsítása és jelenléte következtében nőhet ugyan a bab fehérje tartalma, azonban a károsított babbal összeállított takarmánnyal etetett pontyok élősúlya elmarad az ép babot tartalmazó keveréket fogyasztó társakétől.
9. ÖSSZEOFGLALÁS

A 2013-ban meghirdetett nemzeti fehérjeprogramnak köszönhetően a hüvelyesek termesztési volumene robbanásszerű növekedésnek indult. Közülük is a szója hazai vetésterületének rohamos növekedése.

Közülük is a szója hazai vetésterületének rohamos növekedése.

A globális klímaváltozásnak köszönhetően az utóbbi évtizedekben a hüvelyeseket károsító rovarok faji összetételében, illetve kártételeik mértékében jelentős változás tapasztalható. Ennek a folyamatnak a hüvelyes terményekre gyakorolt hatásának a vizsgálatát tűztük ki célul a dolgozatban.

Ennek keretében elvégeztük a fésűslábú viráglégy [Delia platura (Meigen, 1826)] (n=10), a babzsizsik (Acanthoscelides obtectus Say, 1831) (n=4) és a közönséges takácsatka (Tetranychus urticae Koch, 1836) (n=7) által károsított és ép tételek weendei analízissel megvalósított beltartalmi összetétel elemzését, a közönséges takácsatka esetében pedig az SDS poliakrilamid gélelektroforézis módszerrel történő fehérje-összetétel vizsgálatot is.

Cukorösszetétel vizsgálatokkal elemeztük a vándorpoloska [Nezara viridula (Linnaeus, 1758)] (n=3), valamint a fésűslábú viráglégy által károsított szójababot. Az eredményeket növényanalitikai módszerekkel értékeltünk. A babzsizsik által károsított babminták vizsgálatára CT-diagnosztikai kutatásokat végeztünk. Végül fehérjeemészthetőség vizsgálatokat (n=20) végeztünk egynyaras ponttyal (Cyprinus caprio Linnaeus, 1758), mely során babzsizsik által károsított babtípusok takarmányhasznosulási paramétereit kivántuk empirikus módon meghatározni. Az adatok statisztikai értékelése során egytényezős varianciaanalízist (One-way ANOVA), Student-féle t-próbát végeztünk (P \leq 0.05) Microsoft Excel, R és SPSS for Windows programcsomagok felhasználásával.

Eredményeink az alábbiak:

A fésűslábú viráglégy kártételével kapcsolatos megállapításunk, hogy a faj által károsított szójababok kényszerérették voltak, és ezt a megfigyelést a
mérések során a statisztikai vizsgálatak is alátámasztották (P=0,003). Bár a károsított tételekben átlagosan 0,6%-kal kevesebb nyersfehérje értéket mértünk, a nyersfehérje-tartalomban megmutatkozó eltérés nem volt statisztikailag igazolható (P=0,455). A nyerszsírtartalom a károsított tételekben szignifikáns eltérést mutatott az ép tételekhez képest (P=0,006). A továbbiakban a nyersrost (P=0,001) és nyershamu (P=0,029) értékek szignifikáns eltérését is igazolta a statisztikai elemzés. Átlagosan az aminosavak tekintetében az eltérés 3,68%-os arányban volt tapasztalható.

A vándorpoloska esetében a monoszacharidok közé tartozó fruktóz esetében szignifikáns különbség nem volt tapasztalható a poloskák által károsított, illetve az egészséges tételek között. Szignifikáns eltérést a glükóz, illetve a szacharóz esetében tapasztaltunk (P=3,179e-08, P=0,043).

A közönséges takácsatka által károsított tételek beltartalmi vizsgálata igazolta, hogy a szója fehérjetartalmában és annak struktúrájában a szívogatás következtében minőségi átrendeződés következik be. A nyersfehérje-tartalom a károsítás hatására megváltozott (P=0,049). A nyerszsír- (P=0,643) és nyersrosttartalom (P=0,069) a károsítás hatására történő megváltozását viszont a statisztikai vizsgálatak nem erősítették meg. Az atka károsításának hatására a nyershamutartalomban bekövetkezett változások szintén nem mutattak szignifikáns eltérést (P=0,859). A módszerrel a károsított mintában a 48 kDa tömegű fehérjék megjelenését bizonyítottuk, mindamellett pedig a közönséges takácsatka károsító tevékenységének hatására megjelentek 30 kDa alatti molekulatömegű fehérjék is a mintában. A 69 kDa fehérjék a károsított mintában kisebb arányban találhatóak meg, mint az ép tételekben. A babzsizsik által babon kiváltott beltartalmi átrendeződés tényét a weendei analízis egyértelműen igazolta. A varianciaanalízis eltérő statisztikai összefüggésekre mutatott rá, mely szerint a károsított tételek nyersfehérje- (P=0,042), nyerszsír- (P=0,038) és nyersrost- (P=0,002) tartalma szignifikánsan eltér az ép tételek hasonló értékeitől, viszont a nyershamu
vonatkozásában ez az összefüggés nem volt kimutatható (P=0,519). A lárva táplálkozása miatt bekövetkező átlagos szervesanyag-pusztulás mintegy 234.76±8.54 mg/mag értéket ért el, mely a mag egészének tetemes, konkrétan 49.42% tömegvesztését jelenti. Átlagosan 296.162 mm³-rel kevesebb egy károsított mag térfogata az éphez képest. A térfogatvesztés átlagos értéke 26,21%. A varianciaanalízis megerősítette a károsított terményételek szignifikáns sűrűség- és térfogat csökkenését (P=0,000).

Egynyaras ponttyokkal végzett etetési kísérletünkben a kereskedelmi tápot fogyasztó kontrol csoport dinamikus növekedést produkált, ezzel szemben az ép babot tartalmazó táp hatására nem volt tapasztalható lényegi gyarapodás. A károsított babot tartalmazó keveréktakarmány olyan rosszul hasznosult, hogy a halak vesztettek a súlyukból a kísérlet végére. A kísérlet végeztével statisztikailag is igazolható különbséget tapasztaltunk az eltérő csoportok egyedeinek átlagsúlyában, hosszában és kondíció faktorában is. Legjobb eredményt minden tekintetben a kontrol csoport érte el, a legrosszabban pedig a zsizsik által károsított babot tartalmazó táp.

Az eredményeinkből kiindulva, a jelen klímaszélsőségek és a kedvezőtlen agrotechnikai hatások jövőbeni egybeesése esetén a rovarok kártétele jelentős problémákat vethet fel a hüvelyes takarmánynövények elvárt mennyiségi és minőségi paramétereinek vonatkozásában.
10. SUMMARY

Thanks to the national protein program announced in 2013, the production volume of legumes began to grow explosively. Among them, the sowing area of soy is growing rapidly. Thanks to global climate change, there has been a significant change in the racial composition of insect pests and the extent of their damage in recent decades. The aim of this study was to investigate the effect of this process on leguminous crops.

In the framework of this, we analysed the composition of the seed corn maggot [Delia platura (Meigen, 1826)] (n=10), damaged by intact bones by bean weevil (Acanthoscelides obtectus Say, 1831) (n=4), two-spotted spider mite (Tetranychus urticae Koch, 1836) (n=7), and in the case of two-spotted spider mite, the analysis of protein composition by SDS polyacrylamide gel electrophoresis. Soybeans damaged by southern green stink bug [Nezara viridula (Linnaeus, 1758)] (n=3) and the seed corn maggot were analysed by sugar composition tests. Results were evaluated using bean plant analysis methods. CT-diagnostic studies were carried out to investigate the damaged beans caused by bean weevil. Finally, protein digestibility assays (n=20) were carried out with one-year-old carp (Cyprinus caprio Linnaeus, 1758) in which we intended to determine empirically the feed utilization parameters of damaged beans caused by bean weevil Data were statistically analysed by oneway-anova and t-probe by means of exc. and SPSS hardwares.

According to our results, in the case of the pestilence of the seed corn maggot, we find that the soybeans damaged by the species were compulsive, and this observation was confirmed by the statistical tests (P=0.003). Although we measured an average of 0.6% less crude protein in the damaged items, the difference in crude protein content was not statistically justified (P=0.455). The crude fat content in the affected batches showed a significant difference compared to intact batches (P=0.006). Further, significant differences in the
values of crude fiber (P=0.001) and crude ash (P=0.029) were further demonstrated by statistical analysis. In terms of protein composition analysis, data show a difference (3-6%) for most amino acids. There was no significant difference between the fructose belonging to monosaccharide and the healthy batches in the case of southern green stink bug. Significant differences were observed for glucose and sucrose (P=3.179e-08, P=0.043).

The examination of the items damaged by two-spotted spider mite have been proved that the quality rearrangement, which can be back to the changing of soybean protein content and structure. The crude protein content has been altered (P=0.049). However, the change in crude fat (P=0.643) and crude fiber content (P=0.069) was not statistically confirmed, the decreasing of these parameters was absolutely evinced. As a result of the damage to the mite, changes in crude ash content also showed no significant difference (P=0.859). The method demonstrated the presence of 48 kDa proteins in the damaged sample, while proteins with a molecular weight below 30 kDa appeared in the sample as a result of the normal activity of the two-spotted spider mite. 69 kDa proteins are found in the damaged sample at a lower rate than in intact batches. Weendei analysis clearly confirmed the fact that bean weevil induced the rearrangement of the bean. The analysis of variance revealed different statistical relationships, according to which the content of the crude protein (P=0.042), crude fat (P=0.038) and crude fiber (P=0.002) was significantly different from the similar values of intact batches, but for crude ash it was the correlation was not detectable (P=0.519). The average loss of organic matter due to larval nutrition was about 234.76±8.54 mg / cm, which means a massive loss of 49.42% of the core as a whole. On average, the volume of a damaged core is less than 296.162 mm3 compared to the intact core. The average loss of volume was 26.21%. The variance analysis confirmed the significant decrease in density and volume of damaged crop items (P=0.000).
In our feeding experiment with common carp (Cyprinus carpio), the control group consuming commercial feed produced dynamic growth, whereas the feed with intact bean did not show significant growth. Feed containing damaged beans was so badly utilized that the fish lost their weight at the end of the experiment. At the end of the experiment, we also found a statistically significant difference in the mean weight, length and condition of the individuals in the different groups. The best result was achieved by the control group in all aspects, and the worst was the feed containing the beans damaged by the bean weevil.

Based on our results, in the event of a future coincidence of the current climate extremes and the adverse agrotechnical effects, the damage to the insects may cause significant problems with the expected quantitative and qualitative parameters of leguminous fodder plants.
11. KÖSZÖNETNYÍLVÁNÍTÁS

Ezúton szeretném kifejezni köszönetemet a munkámban nyújtott segítségéért, iránymutatásáért témavezetőmnek, Dr. habil Keszthelyi Sándornak, illetve társ-témavezetőmnek, Prof. Dr. Hancz Csabának.

Köszönet illeti továbbá a Kaposvári Egyetem Aquakultúra és Halgazdálkodási Tanszék dolgozói. Dr. Kucska Baláznak, Schell Dórának, Stettner Gabriellának kiemelten köszönöm a halas etetési kísérletben nyújtott segítségüket.

Szeretném megköszönni Dr. Donkó Tamásnak a CT diagnosztikai vizsgálatoknál nyújtott segítségét.

Szeretném megköszönni Dr. habil. Kerepesi ldikónak a cukorösszetétel vizsgálatokban nyújtott segítségét.

Köszönettel tartozom a Kaposvári, valamint a Pécsi Egyetemnek a vizsgálatok helyszínének biztosításáért, illetve a laborasszisztenseknek a kísérletek elvégzésében nyújtott segítségükért.

Köszönetet mondok a mintagyűjtésben nyújtott segítségért Pethő Tamásnak, a Dráva-Coop Zrt. növénytermesztési ágazatvezetőjének.

Köszönet illeti a Kaposvári Egyetem Bicsérdi Kutató Intézet dolgozói a kísérleti minták előkészítésében nyújtott segítségükért, külön kiemelve Deák Jánosnét és Tornyos Gáborat.

Természetesen hálás köszönettel tartozom családomnak, elsősorban férjemnek és lányomnak a sok türelemért és támogatásért, hogy ez a munka megvalósulhatott.

Adamidou, S. (2008): Effect of extrusion on the nutritional values of peas (Pisum sativum), chickpeas (Cicer arietinum) and Faba beans (Vicia faba) and inclusion in feeds for European sea bass (Dicentrarchus labrax) and Gilthead seabream (Sparus aurata). PhD Thesis. University of Stirling, Scotland.

Gesell, S. (2000): Seed corn maggot as a pest of field corn. Entomological Notes, department of Entomology. Penn State University. UF/IFAS, USA.

Columbian expansions of the ranges of *Acanthoscelides obtectus* Say, a cosmopolitan insect pest of the common bean. PLoS ONE 8: 1–12.

Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., Chivian, E. (2001): Climate change and extreme weather events; Implications for food
production, plant diseases, and pests. Global Change and Human Health, 2: 90–104.

Smith, H. (1977): The molecular biology of plant cells, University of California press Berkeley and Los Angeles, California, USA

soybean meal in the diet of *Clarias gariepinus* (Burchell, 1822) fingerlings. Original Research, 6: 207–213.

A fontosabb szántóföldi növények termesztése, és felhasználása (2013–): URL5:
http://www.ksh.hu/docs/hun/xstadat/xstadat_eyes/i_omn002a.html
(Letöltés ideje: 2016.11.20.)

Évközi adatok, KSH (2013–): URL6: http://www.ksh.hu/stadat_evkozi_4_1
(Letöltés ideje: 2018.06.13.)

Ipari és takarmánynövények termesztése, Hoffmann S. (2011): URL7: http://www.tankonyvtar.hu/hu/tartalom/tamop425/0010_1A_Book_10_Ipari_es_takarmanyvovenyek_termesztese/ch05.html#id564364
(Letöltés ideje: 2013.január 10.)

Fontosabb növények termésátlagai, AKI (2013): URL11: https://www.aki.gov.hu/publikaciok/kuldes/a:447/Fontosabb+n%C3%B6v%C3%A9nyek+megyei+term%C3%A9s%C3%A1tlagai+2007-2014+k%C3%B6z%C3%B6tt (Letöltés ideje: 2014.01.08.)

13. A DISSZERTÁCIÓ TÉMAKÖRÉBŐL MEGJELENT PUBLIKÁCIÓK

14. A DISSZERTÁCIÓ TÉMAKÖRÉN KÍVÜLI PUBLIKÁCIÓK

TN: Tudomány-népszerűsítő cikk
R: Referált cikk
IF: Impakt faktoros cikk
15. RÖVID SZAKMAI ÉLETRAJZ

SZEMÉLYI ADATOK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Születési idő, hely:</td>
<td>1981. október 19., Kapuvár</td>
</tr>
<tr>
<td>Családi állapot:</td>
<td>házas</td>
</tr>
</tbody>
</table>

Állampolgárság: magyar

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Értesítési cím:</td>
<td>7635 Pécs, Nagyszkókói u. 42.</td>
</tr>
<tr>
<td>Telefon:</td>
<td>+36/30-493-2344</td>
</tr>
<tr>
<td>E-mail:</td>
<td>b.egrihelga@gmail.com</td>
</tr>
</tbody>
</table>

VÉGZETTSÉG

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-</td>
<td>Kaposvári Egyetem ÁTK, Állattenyésztési</td>
</tr>
<tr>
<td></td>
<td>Tudományok Doktori Iskola, PhD hallgató, várható</td>
</tr>
<tr>
<td></td>
<td>befejezés: 2017. december</td>
</tr>
<tr>
<td>2002 - 2007</td>
<td>Pannon Egyetem, Georgikon</td>
</tr>
<tr>
<td></td>
<td>Mezőgazdaságtudományi Kar</td>
</tr>
<tr>
<td></td>
<td>Növényorvosi szak</td>
</tr>
<tr>
<td></td>
<td>Kutatás-fejlesztés szakirány</td>
</tr>
<tr>
<td>2000-2001</td>
<td>Pálffy Miklós Kereskedelmi Szakközépiskola, Győr,</td>
</tr>
<tr>
<td></td>
<td>üzleti ügyintéző</td>
</tr>
<tr>
<td>1996 - 2001</td>
<td>Pálffy Miklós Kereskedelmi Szakközépiskola, Győr,</td>
</tr>
<tr>
<td></td>
<td>érettségi</td>
</tr>
</tbody>
</table>

MUNKAHELYEK, GYAKORLATOK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 -</td>
<td>AgroHeBa Mezőgazdasági Tanácsadó Kft,</td>
</tr>
<tr>
<td></td>
<td>szaktanácsadó, növényorvos</td>
</tr>
<tr>
<td>2016 -2017</td>
<td>Ujhelyi Imre Mezőgazdasági Szakközépiskola,</td>
</tr>
<tr>
<td></td>
<td>szaktanár (részmunkaidő)</td>
</tr>
<tr>
<td>2012 – 2015</td>
<td>Kaposvári Egyetem, Bicsérdei Takarmánykutató</td>
</tr>
<tr>
<td></td>
<td>Intézet, telepvezető, tudományos segédmunkatárs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2010 – 2012</td>
<td>Baranya Megyei Kormányhivatal Növény- és Talajvédelmi Igazgatósága, növényvédelmi zoológus és előrejelző</td>
</tr>
<tr>
<td>2008 – 2010</td>
<td>Gazdakör Kft., Pellérd, növényvédelmi szakirányító</td>
</tr>
<tr>
<td>2007 – 2008</td>
<td>IKR Zrt., gyakornok</td>
</tr>
<tr>
<td>2007</td>
<td>OTDK, Debrecen, különdíj, Borszölő gombabetegségei, különös tekintettel az előrejelzés fontosságára</td>
</tr>
<tr>
<td>2003</td>
<td>Pannonhalma-sokoróaljai borvidék, Lengyel István Pincészete</td>
</tr>
</tbody>
</table>

NYELVISMERET

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Német középfok, C típusú nyelvvizsga</td>
</tr>
<tr>
<td>2019</td>
<td>Angol alapfok, C típusú folyamatban</td>
</tr>
</tbody>
</table>

SZÁMÍTÓGÉPES ISMERETEK

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Office, Ms Excel, Ms PowerPoint, Ms Outlook, Ms Access, Internet, e-mail</td>
</tr>
</tbody>
</table>

ÉGYÉB ISMERETEK, TEVÉKENYSÉGEK

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B kategóriás gépkocsivezetői engedély (2003)</td>
</tr>
</tbody>
</table>

HOBBY

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Család, kertészkedés, sport, kirándulás</td>
</tr>
</tbody>
</table>